pickling process
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 31)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Xu Zhang ◽  
Mengchu Gao ◽  
Sadaqat Ali Chattha ◽  
Yiwen Zhu ◽  
Biyu Peng ◽  
...  

Abstract Traditionally, universally used pelt bating technologies rely on the application of trypsin, neutral and alkaline microbial proteases but suffer from complicated operation, limited bating efficiency and unsatisfactory leather performance. Therefore, devising a new pelt bating approach to achieve high bating efficiency and excellent leather performance has always been wished for by the leather industry. To pursue this goal, years of persistent research work enabled us to develop a novel approach for pelt bating by means of acidic proteases in pickling process. Initially, basic enzymatic characteristics and bating effectiveness of several typical acidic proteases in pelt pickling medium were investigated; then, the bating effectiveness through the quantitative characterization of protease activity of the optimal acidic protease was compared with that of the conventional bating enzyme. The results indicated that all of the selected acidic proteases had good salt-tolerance and exhibited optimum activity at pH 3.0–4.0. The novel pickling-bating method based on microbial origin acidic protease L80A led to an outstanding performance on pelt bating at the dosage of 150 U/mL of collagenolytic activity. The bating effectiveness of acidic protease L80A was comparable to and even better than that of trypsin BEM due to its moderate proteolytic ability. Moreover, the deep and even penetration of acidic protease in the pelt permitted it to produce soft, organoleptically stable and overall better quality crust leather than that of the conventional trypsin bating method. Additionally, pelt bating was performed along with the pickling process without extra inactivation and washing operation, making the bating operation more efficient, economical, and environment friendly. Results had made us to conclude that this cutting-edge acidic proteases based pickling-bating method could be the first step/ way forward to replace the decades-old traditional pelt bating technology.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2275
Author(s):  
Arafat Toghan ◽  
Mohamed Gouda ◽  
Kamal Shalabi ◽  
Hany M. Abd El-Lateef

Converting low-cost bio-plant residuals into high-value reusable nanomaterials such as microcrystalline cellulose is an important technological and environmental challenge. In this report, nanocrystalline cellulose (NCC) was prepared by acid hydrolysis of macrocrystalline cellulose (CEL). The newly synthesized nanomaterials were fully characterized using spectroscopic and microscopic techniques including FE-SEM, FT-IR, TEM, Raman spectroscopy, and BET surface area. Morphological portrayal showed the rod-shaped structure for NCC with an average diameter of 10–25 nm in thickness as well as length 100–200 nm. The BET surface area of pure CEL and NCC was found to be 10.41 and 27 m2/g, respectively. The comparative protection capacity of natural polymers CEL and NCC towards improving the SS316 alloy corrosion resistance has been assessed during the acid pickling process by electrochemical (OCP, PDP, and EIS), and weight loss (WL) measurements. The outcomes attained from the various empirical methods were matched and exhibited that the protective efficacy of these polymers augmented with the upsurge in dose in this order CEL (93.1%) < NCC (96.3%). The examined polymers display mixed-corrosion inhibition type features by hindering the active centers on the metal interface, and their adsorption followed the Langmuir isotherm model. Surface morphology analyses by SEM reinforced the adsorption of polymers on the metal substrate. The Density Functional Theory (DFT) parameters were intended and exhibited the anti-corrosive characteristics of CEL and NCC polymers. A Monte Carlo (MC) simulation study revealed that CEL and NCC polymers are resolutely adsorbed on the SS316 alloy surface and forming a powerful adsorbed protective layer.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 800
Author(s):  
Yi-Hung Wang ◽  
I-Ming Hung ◽  
Cheng-Yeou Wu

In this study, a simple and environment-friendly method of preparing activated graphite felt (GF) for a vanadium redox flow battery (VRFB) by depositing the vanadium precursor on the GF surface and calcining vanadium oxide was explored. The intermediate material, VO2, generated carbon oxidation during the calcination. In contrast to the normal etching method, this method was simple and without a pickling process. On the surface of the activated GF, multiple pores and increased roughness were noted after the calcination temperature and surface area of the activated GF reached 350 °C to 400 °C and 17.11 m2/g, respectively. Additionally, the polarization of the activated GF decreased with resistance to the charge transfer at 0.27 Ω. After a single-cell test at current density of 150 mA/cm2 was performed, the capacity utilization and the capacity retention after 50 cycles reached 70% and 84%, respectively. These results indicated the potential use of activated GF as an VRFB electrode.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1480
Author(s):  
Renata Biškauskaitė ◽  
Violeta Valeikienė ◽  
Virgilijus Valeika

Recently, increasing attention has been paid to the application of enzymes in a wide variety of leather production processes. The aim of the present study was to investigate the action of enzymatic pickling on derma’s collagen and the influence of this action on subsequent processes and properties of chromed and finished leather. The application of active in acidic medium proteolytic enzymes in the pickling process led to an additional impact on derma structure: collagen was more strongly affected and the porosity of the pelt dermis was reduced, but the hide became more thermally stable. The enzymatically pickled pelt bonded more chromium and reached higher shrinkage temperature while chroming; dyes penetrated deeper; such leather bonded more fatliquors. On the other hand, the action of enzymes worsened the physical–mechanical properties of the leather, as the experimental leather was weaker than the conventional one. The first was characterised by weaker grain layer and had significantly higher relative elongation. Therefore, as some properties improve and others worsen during such a process, the application of every enzyme should be carefully investigated and optimized to produce a leather with defined properties.


Author(s):  
Li Zhang ◽  
Wei Liu ◽  
Jiahong Ji ◽  
Lina Deng ◽  
Qian Feng ◽  
...  

Freshly harvested Jerusalem artichoke tubers contain inulinase, an enzyme that requires inactivation, because of its ability to hydrolysis inulin into fructose, which can be consumed by microorganism during marination. As the traditional pickling process takes 6 months, and involves the addition of a large amount of salt (18–20%), this production strategy is uneconomical and increases the nitrite intake. Additionally, miscellaneous bacteria produced during pickling affect the product taste. In this study, the enzyme inactivation effects of NaCl, NaHCO3, and ultrasound were evaluated. NaHCO3 treatment results in the highest degree of enzyme inactivation; however, the quality and flavor of the obtained Jerusalem artichoke pickles were not ideal. The Jerusalem artichoke pickles in which the enzymes were inactivated using a combination of NaCl and ultrasound exhibited better flavor than those exposed to NaHCO3; further, this combination reduced the inulinase activity of the Jerusalem artichokes to 2.50 U/mL, and maintained the inulin content at 61.22%. The strains LS3 and YS2, identified as Enterococcus faecalis and the salt-tolerant yeast Meyerozyma guilliermondii, respectively, were the dominant microorganisms isolated from the pickle juice. Jerusalem artichokes with inactivated inulinase were pickled with microbial powder, separated, purified, and dried to remove the natural Jerusalem artichoke sauce. This process shortened the fermentation cycle and improved product quality.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazunori Sawada ◽  
Hitoshi Koyano ◽  
Nozomi Yamamoto ◽  
Takuji Yamada

AbstractThe microbial community during fermented vegetable production has a large impact on the quality of the final products. Lactic acid bacteria have been well-studied in such processes, but knowledge about the roles of non-lactic acid bacteria is limited. This study aimed to provide useful knowledge about the relationships between the microbiota, including non-lactic acid bacteria, and metabolites in commercial pickle production by investigating Japanese pickles fermented in rice-bran. The samples were provided by six manufacturers, divided into two groups depending on the production conditions. The microbiological content of these samples was investigated by high-throughput sequencing, and metabolites were assessed by liquid chromatography-mass spectrometry and enzymatic assay. The data suggest that Halomonas, halophilic Gram-negative bacteria, can increase glutamic acid content during the pickling process under selective conditions for bacterial growth. In contrast, in less selective conditions, the microbiota consumed glutamic acid. Our results indicate that the glutamic acid content in fermented pickle is influenced by the microbiota, rather than by externally added glutamic acid. Our data suggest that both lactic acid bacteria and non-lactic acid bacteria are positive key factors in the mechanism of commercial vegetable fermentation and affect the quality of pickles.


2021 ◽  
Vol 71 (12) ◽  
pp. 34-46
Author(s):  
Nagy A. E. Emara ◽  
Rehab M. Amin ◽  
Ahmed F Youssef ◽  
Souad A. Elfeky

This study was steered to convert waste acid ensued from the pickling process in steel industries to an esteemed nanocomposite for the elimination of heavy metals (HMs) from wastewater. Magnetic nanoparticles (Fe3O4) preparation from waste was performed by the co-precipitation method. These magnetic nanoparticles are modified by carboxymethyl-a-cyclodextrin polymer (CM-a-CD) through copolymerization reactions. The data obtained from FTIR, XRD, and TEM point up that CM-a-CD is entrenched onto Fe3O4 nanoparticles. The generated CM-a-CD / Fe3O4 was employed for HMs deportation from contaminated water and the adsorption results revealed that CM-a-CD/ Fe3O4 sorption efficiency was in the order of Pb(II) ] Cd(II) ] Cr(VI). The highest adsorption capacity was 64.2 (mg/g) for Pb(II). The kinetic study revealed that the HMs sorption by CM-a-CD/ Fe3O4 follows the pseudo-second-order model. The equilibrium modeling study proved that the Langmuir isotherm model was more fitting. The coexisting ions do not significantly alter the percentage removal of the measured metal ions. The efficiency of the synthesized polymer is particularly high in the tested field samples. Thus, CM-a-CD/ Fe3O4 has an extremely high adsorption capability in the field application as well as excellent reusability results, which will reduce the cost for the CM-a-CD / Fe3O4 as an adsorbent for wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document