Faulty Rotor System Vibration Acceleration Signal Integration Method Based on Precise Information Reconstruction

2013 ◽  
Vol 49 (08) ◽  
pp. 1 ◽  
Author(s):  
Guangrui WEN
2015 ◽  
Vol 770 ◽  
pp. 540-546 ◽  
Author(s):  
Yuri Eremenko ◽  
Dmitry Poleshchenko ◽  
Anton Glushchenko

The question about modern intelligent information processing methods usage for a ball mill filling level evaluation is considered. Vibration acceleration signal has been measured on a mill laboratory model for that purpose. It is made with accelerometer attached to a mill pin. The conclusion is made that mill filling level can not be measured with the help of such signal amplitude only. So this signal spectrum processed by a neural network is used. A training set for the neural network is formed with the help of spectral analysis methods. Trained neural network is able to find the correlation between mill pin vibration acceleration signal and mill filling level. Test set is formed from the data which is not included into the training set. This set is used in order to evaluate the network ability to evaluate the mill filling degree. The neural network guarantees no more than 7% error in the evaluation of mill filling level.


1999 ◽  
Vol 5 (3) ◽  
pp. 203-218 ◽  
Author(s):  
Walter Bartelmus

The paper deals with mathematical modelling and computer simulation of a gearbox system. Results of computer simulation show new possibilities of extended interpretation of a diagnostic acceleration signal if signal is obtained by synchronous summation. Four groups of factors: design, production technology, operation, change of gear condition are discussed. Results of computer simulations give the relation between inter-teeth forces and vibration (acceleration, velocity). Some results of computer simulations are referred to the results obtained in rig measurements and in field practice. The paper shows a way of increasing the expert's knowledge on the diagnostic signal, which is generated by a gearbox system, on a base of mathematical modelling and computer simulation.


Author(s):  
Junhong Zhang ◽  
Xin Lu ◽  
Jiewei Lin ◽  
Liang Ma ◽  
Huwei Dai

In this paper, a dynamic model of a “0-2-1” rotor system with rubbing fault between blade and abradable coated casings is developed. The sub-model of rubbing force considers scraping work energy of coating, casing stiffness, and initial clearance between blade tip and casing. A rotor rig is established and samples of abradable coatings are introduced into the rubbing experiment. Vibration characteristics of the rotor system under blade-casing rubbing fault are analyzed. Effects of rotating speed and initial clearance on the rub force and the system vibration are studied. Results show that the vibration of rotor focuses on the fundamental and multiple fundamental frequencies due to the blade-casing rubbing with the abradable coating. The multiple fundamental frequencies, the 2 × and 3 × in particular, are greatly affected by the rotating speed. The fractional harmonic frequencies are strongly influenced by the initial clearance between the blade tip and casing. Besides, the rotating speed and the initial clearance between the blade tip and abradable coating on the casing also affect the amplitude and distribution of the rub force.


2011 ◽  
Vol 143-144 ◽  
pp. 675-679 ◽  
Author(s):  
Fu Ze Xu ◽  
Xue Jun Li ◽  
Guang Bin Wang ◽  
Da Lian Yang

It is common for the imbalance-crack coupling fault in rotating machinery, while the crack information is often overshadowed by unbalanced fault information, which is difficult to extract the crack signal. In order to extract the crack signal of the imbalance-crack coupling fault, and realize the fault diagnosis, the paper mainly analyzes its mechanical properties, and then use wavelet packet to de-nosing, decomposing and reconstructing the acquisition of vibration acceleration signal, and then analyzing the characteristics of frequency domain of the fault signal by using the energy spectrum. So the experiment proved that analyze and dispose the acquisition of the fault signal by using the method of the energy spectrum and the wavelet packet, which can effectively distinguish between the crack signal and unbalanced signals in imbalance-crack coupling faults .It also can provide some reference for the diagnosis and prevention for such fault.


Tribologia ◽  
2017 ◽  
Vol 272 (2) ◽  
pp. 49-58 ◽  
Author(s):  
Wacław GAWĘDZKI ◽  
Jerzy TARNOWSKI

The article presents the influence of friction force values during the contact of a gas pipeline with sand pack on the transmission of soil vibrations on a tested pipe section. Field experiments were carried out on standard gas pipeline insulations subjected to dynamic interactions. The load sources comprised artificially generated soil vibrations with an impulsive character. Within the course of experiments, soil and pipe vibration acceleration signals were registered for different values of friction forces in its contact with the soil. The value of friction forces being a variable parameter during experiments were applied by the change of values of the tension static force of the gas pipeline section. The analysis of the registered soil and pipe vibration acceleration signals were conducted based on the time-domain signal decomposition method, Hilbert-Huang Transform (HHT). This method enables one to decompose the non-stationary vibration acceleration signal into narrowband components. For each component, a course of instantaneous values for frequency and amplitude was specified. The dependence of the pipe vibration acceleration amplitude on the pipe tensile force and friction force of the pipe in the contact with the soil was demonstrated.


2012 ◽  
Vol 605-607 ◽  
pp. 739-743
Author(s):  
Yue Kun Zheng ◽  
Yi Jian Huang

Used the high order spectrum and slice analysis method, studied the elevator running vibration acceleration signals and calculated the trispectrum two dimensional slices, bispectrum and theirs diagonal slices, under different running conditions. The results show that: when the elevator normal operation the acceleration signal spectrum peaks concentration, otherwise the acceleration signal peaks dispersion; in fault condition, compared to bispectrum peaks trispectrum peaks is sharper. High order spectrum contains abundant information of different fault elevator running details. It is a suitable analysis tool for diagnosing the faults of elevator.


2020 ◽  
Vol 56 (15) ◽  
pp. 191
Author(s):  
YAO Hongliang ◽  
CAO Yanbo ◽  
ZHANG Qin ◽  
WEN Bangchun

2014 ◽  
Vol 8 (1) ◽  
pp. 264-269
Author(s):  
Guangtian Shi

Through an example of rotor system which has multi-degree of freedom mounted on the nonlinear fluid film bearings, this paper analyzes the precise integration algorithm, a new numerical solution for high–dimensional nonlinear dynamics system. The precise integration method has advantages of long step, high precision and absolute stability for solving nonlinear dynamics equations. To make good use of the method, firstly, the precise integral iterative formula is given and then the mechanism of controlling high precision and efficiency is discussed. The evolution of precise integration method is an algorithm with explicit, simple form, self-start, and fast to solve nonlinear dynamics equations. High power of athwart of Hamiltonian matrix is not needed, so it is convenient in this case. The stability of period response of nonlinear rotor-bearing system is analyzed by employing the precise integration method. The bifurcation rules of the period response of the elastic rotor system with multi-degree of freedom are obtained and the chaos of the system is determined according to the fractal dimension of Poincare mapping of phase space at a certain speed.


Sign in / Sign up

Export Citation Format

Share Document