scholarly journals Performance of Thrust Foil Bearings with Nonlinear Foil Stiffness Model

2020 ◽  
Vol 56 (15) ◽  
pp. 198
Author(s):  
XU Fangcheng ◽  
HOU Liukai ◽  
WU Bin
2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Abdelrasoul M. Gad ◽  
Shigehiko Kaneko

A new structural stiffness model for the compliant structure in foil gas bearings is introduced in the first part of this work. The model investigates the possibility that the flat segment between bumps, in bump foil strip, may deflect laterally and separate from the rigid bearing surface, and it also considers the interaction between bumps in the bump foil strip, the friction between the bump foil, and the surrounding structure. The validity of the analytical solution was verified through direct comparison with previous numerical and analytical models. In the second part of this work, the introduced bump foil model is used to investigate the static characteristics of generation II gas foil thrust bearing. The numerical simulations of the coupled fluid-structure interactions revealed that the foil thrust bearings share many features with their rigid bearing counterpart and the results showed clearly that the load carrying capacity of foil thrust bearings increases nonlinearly with the rotation speed and is expected to reach an asymptote as the rotation speed exceeds a certain value. The effects of ramp height and interface friction (i.e., friction at bump foil/rigid bearing interface and bump foil/top foil interface) on the static characteristics of generation II foil thrust bearings are investigated.


Author(s):  
Fangcheng Xu ◽  
Zhansheng Liu ◽  
Guanghui Zhang ◽  
Liang Xie

The mathematical model of film thickness is developed with considering the compressibility of the gas and the deformation of the foil in this paper. By employing the Newton-Raphson method and the finite difference method, the compressible gas lubricated Reynolds equation and the film thickness equation are solved coupling together. The static characteristics such as pressure distribution and film thickness distribution for equivalent bump foil stiffness model are obtained to verify the validation of the proposed method. The gas film thickness model is modified by modeling the top foil as the one dimension curved beam, to meet the case of the real physical model. The numerical results of this modified structural model are compared with the other finite element top foil models. It indicates that the pressure distribution for bump foil gas bearing is in good agreement with the test data.


2021 ◽  
pp. 109963622199386
Author(s):  
Tianshu Wang ◽  
Licheng Guo

In this paper, a shear stiffness model for corrugated-core sandwich structures is proposed. The bonding area is discussed independently. The core is thought to be hinged on the skins with torsional stiffness. The analytical model was verified by FEM solution. Compared with the previous studies, the new model can predict the valley point of the shear stiffness at which the relationship between the shear stiffness and the angle of the core changes from negative correlation to positive correlation. The valley point increases when the core becomes stronger. For the structure with a angle of the core smaller than counterpart for the valley point, the existing analytical formulations may significantly underestimate the shear stiffness of the structure with strong skins. The results obtained by some previous models may be only 10 persent of that of the present model, which is supported by the FEM model.


Author(s):  
Hao Li ◽  
Haipeng Geng ◽  
Bo Wang ◽  
Wei Zheng

In this paper, a rotordynamic experiment on a compressor rotor system is presented and the feasibility of gas foil bearings with inhomogeneous bump foils is verified. A push–pull device is designed to obtain the stiffness curve and the nominal clearance of foil bearings. Operating points and dynamic coefficients of the rotor system at each rotating speed are predicted. In rotordynamic analysis, an alternative model of the impeller is proposed and the critical speed is predicted by employing the finite element method, in which the dynamic coefficients of inhomogeneous foil bearings are taken into account. Compared with the experimental result, the accuracy of the prediction for the critical speed is verified to be about 14% error. Two sets of foil bearings with 22 and 41 μm nominal clearance are manufactured and tested. Test results indicate that the vibration amplitude can be greatly reduced by diminishing the bearing clearance. When foil bearings with 22 μm clearance are used, the high-order harmonic frequencies of rotor vibration are significantly inhibited, and the amplitude of the rotating frequency is obviously restricted. Thus, the foil bearing with inhomogeneous bump foils tested in this paper can meet the speed requirement of the compressor when the nominal clearance is set at 22 μm.


1995 ◽  
Vol 48 (11S) ◽  
pp. S61-S67 ◽  
Author(s):  
Carlos E. S. Cesnik ◽  
Dewey H. Hodges

An asymptotically exact methodology, based on geometrically nonlinear, three-dimensional elasticity, is presented for cross-sectional analysis of initially curved and twisted, nonhomogeneous, anisotropic beams. Through accounting for all possible deformation in the three-dimensional representation, the analysis correctly accounts for the complex elastic coupling phenomena in anisotropic beams associated with shear deformation. The analysis is subject only to the restrictions that the strain is small relative to unity and that the maximum dimension of the cross section is small relative to the wave length of the deformation and to the minimum radius of curvature and/or twist. The resulting cross-sectional elastic constants exhibit second-order dependence on the initial curvature and twist. As is well known, the associated geometrically-exact, one-dimensional equilibrium and kinematical equations also depend on initial twist and curvature. The corrections to the stiffness model derived herein are also necessary in general for proper representation of initially curved and twisted beams.


Sign in / Sign up

Export Citation Format

Share Document