scholarly journals Stability Modeling and Analysis of Non-circular High-speed Grinding with Consideration of Dynamic Grinding Depth

2021 ◽  
Vol 57 (15) ◽  
pp. 264
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 24637-24645
Author(s):  
Sansan Ding ◽  
Weitao Han ◽  
Jinji Sun ◽  
Fujie Jiang ◽  
Guimei Deng ◽  
...  

2010 ◽  
Vol 135 ◽  
pp. 238-242
Author(s):  
Yue Ming Liu ◽  
Ya Dong Gong ◽  
Wei Ding ◽  
Ting Chao Han

In this paper, effective finite element model have been developed to simulation the plastic deformation cutting in the process for a single particle via the software of ABAQUS, observing the residual stress distribution in the machined surface, the experiment of grinding cylindrical workpiece has been brought in the test of super-high speed grinding, researching the residual stress under the machined surface by the method of X-ray diffraction, which can explore the different stresses from different super-high speed in actual, and help to analyze the means of reducing the residual stresses in theory.


Author(s):  
Yao Wu ◽  
Pan Lu ◽  
Feihong Lin ◽  
Wencheng Bao ◽  
Meina Qu ◽  
...  

2011 ◽  
Vol 487 ◽  
pp. 39-43 ◽  
Author(s):  
L. Tian ◽  
Yu Can Fu ◽  
W.F. Ding ◽  
Jiu Hua Xu ◽  
H.H. Su

Single-grain grinding test plays an important part in studying the high speed grinding mechanism of materials. In this paper, a new method and experiment system for high speed grinding test with single CBN grain are presented. In order to study the high speed grinding mechanism of TC4 alloy, the chips and grooves were obtained under different wheel speed and corresponding maximum undeformed chip thickness. Results showed that the effects of wheel speed and chip thickness on chip formation become obvious. The chips were characterized by crack and segment band feature like the cutting segmented chips of titanium alloy Ti6Al4V.


2012 ◽  
Vol 614-615 ◽  
pp. 1299-1302
Author(s):  
Ming Jing Li ◽  
Yu Bing Dong ◽  
Guang Liang Cheng

Multiple high speed CMOS cameras composing intersection system to splice large effect field of view(EFV). The key problem of system is how to locate multiple CMOS cameras in suitable position. Effect field of view was determined according to size, quantity and dispersion area of objects, so to determine camera position located on below, both sides and ahead to moving targets. This paper analyzes effect splicing field of view, operating range etc through establishing mathematical model and MATLAB simulation. Location method of system has advantage of flexibility splicing, convenient adjustment, high reliability and high performance-price ratio.


2006 ◽  
Vol 304-305 ◽  
pp. 492-496 ◽  
Author(s):  
Yu Hou Wu ◽  
L.X. Zhang ◽  
Ke Zhang ◽  
Song Hua Li

As one of the modern manufacture technology, high-speed precision grinding takes an important part in the modern manufacture field. With the development of the technology on high-speed spindle unit, linear precision high-speed feed unit, manufacture of grinding wheel, measurement etc, a great deal of research achievements make it possible for high-speed precision grinding. In this paper, using PMAC (Programmable Multi-Axis Controller)—PC as the central controller, a new kind of high-speed precision grinder is designed and manufactured. The servo control technology of linear motor is investigated. The dynamic performances of the machine are analyzed according to the experimental results. Elliptical workpieces have been machined with this new high-speed precision grinder. Based on these research results, a very helpful approach is provided for the precision grinding of complicated workpieces, and these results promote the development of high speed grinding too.


2005 ◽  
Vol 291-292 ◽  
pp. 67-72 ◽  
Author(s):  
M. Ota ◽  
T. Nakayama ◽  
K. Takashima ◽  
H. Watanabe

There are strong demands for a machining process capable of reducing the surface roughness of sliding parts, such as auto parts and other components, with high efficiency. In this work, we attempted to grind hardened steel to a mirror-like surface finish with high efficiency using an ultra-high speed grinding process. In the present study, we examined the effects of the work speed and the grinding wheel grain size in an effort to optimize the grinding conditions for accomplishing mirror-like surface grinding with high efficiency. The results showed that increasing the work speed, while keeping grinding efficiency constant, was effective in reducing the work affected layer and that the grinding force of a #200 CBN wheel was lower than that of a #80 CBN wheel. Based on these results, a high-efficiency grinding step with optimized grinding conditions was selected that achieved excellent ground surface quality with a mirror-like finish.


Sign in / Sign up

Export Citation Format

Share Document