scholarly journals E2F6 is essential for cell viability in breast cancer cells during replication stress

2019 ◽  
Vol 43 (5) ◽  
pp. 293-304
Author(s):  
Inam Jasim LAFTA
2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15039-e15039
Author(s):  
Vincenzo Quagliariello ◽  
Simona Buccolo ◽  
Martina Iovine ◽  
Andrea Paccone ◽  
Annamaria Bonelli ◽  
...  

e15039 Background: Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel therapy to treat hypercholesterolaemia and related cardiovascular diseases. Evolocumab, a PCSK9 inhibitor, reduced the risk of cardiovascular events in patients with atherosclerotic cardiovascular diseases when added to maximally tolerated statin therapy (± ezetimibe), and recent data from the ODYSSEY OUTCOMES trial indicate that alirocumab added to maximally tolerated statin therapy (± other lipid-lowering drugs) reduces the risk of cardiovascular events in patients with a recent acute coronary syndrome. Methods: Human fetal cardiomyocytes (HFC cell line), human HER2+ breast cancer cells were exposed to subclinical concentration of doxorubicin, trastuzumab, sequential treatment of both (all 100 nM), alone or in combination with evolocumab (50 nM) for 24 and 48h. After the incubation period, we performed the following tests: determination of cell viability, through analysis of mitochondrial dehydrogenase activity, study of lipid peroxidation (quantifying cellular Malondialdehyde and 4-hydroxynonenal), intracellular Ca2+ homeostasis. Moreover, pro-inflammatory studied were also performed (activation of NLRP3 inflammasome; expression of TLR4/MyD88; mTORC1 Fox01/3a; transcriptional activation of p65/NF-κB and secretion of cytokines involved in cardiotoxicity (Interleukins 1β, 8, 6). Results: Evolocumab co-incubated with doxorubicin alone or in sequence with trastuzumab exerts cardioprotective effects, enhancing cell viability of 35-43% compared to untreated cells (p < 0,05 for all); in cardiomyocytes Evolocumab reduced significantly the cardiotoxicity through MyD88/NF-KB/cytokines axis and mTORC1 Fox01/3α mediated mechanisms. In human HER2+ breast cancer cells, co-exposure of Evolocumab with doxorubicin and trastuzumab increased significantly cell apoptosis and necrosis through the involvement of key cytokines involved in chemoresistence. Conclusions: We demonstrated, for the first time, that the PCSK9 inhibitor evolocumab exerts direct effects in cardiomyocytes and human HER2+ breast cancer cells during doxorubicin and trastuzumab exposure turning on a new light on its possible use in the management of breast cancer therapies.


2018 ◽  
Vol 46 (4) ◽  
pp. 1737-1747 ◽  
Author(s):  
Yue Zhang ◽  
Qingyuan Zhang ◽  
Zhongru Cao ◽  
Yuanxi Huang ◽  
Shaoqiang Cheng ◽  
...  

Background/Aims: Homeobox D3 (HOXD3) is a member of the homeobox family of genes that is known primarily for its transcriptional regulation of morphogenesis in all multicellular organisms. In this study, we sought to explore the role that HOXD3 plays in the stem-like capacity, or stemness, and drug resistance of breast cancer cells. Methods: Expression of HOXD3 in clinical breast samples were examined by RT-PCR and immunohistochemistry. HOXD3 expression in breast cancer cell lines were analyzed by RT-PCR and western blot. Ability of drug resistance in breast cancer cells were elevated by MTT cell viability and colony formation assays. We examined stemness using cell fluorescent staining, RT-PCR and western blot for stem cell marker expression. Finally, activity of wnt signaling was analyzed by FOPflash luciferase assays. RT-PCR and western blot were performed for downstream genes of wnt signaling. Results: We demonstrated that HOXD3 is overexpressed in breast cancer tissue as compared to normal breast tissue. HOXD3 overexpression enhances breast cancer cell drug resistance. Furthermore, HOXD3 upregulation in the same cell lines increased sphere formation as well as the expression levels of stem cell biomarkers, suggesting that HOXD3 does indeed increase breast cancer cell stemness. Because we had previously shown that HOXD3 expression is closely associated with integrin β3 expression in breast cancer patients, we hypothesized that HOXD3 may regulate breast cancer cell stemness and drug resistance through integrin β 3. Cell viability assays showed that integrin β 3 knockdown increased cell viability and that HOXD3 could not restore cancer cell stemness or drug resistance. Given integrin β 3’s relationship with Wnt/β-catenin signaling, we determine whether HOXD3 regulates integrin β 3 activity through Wnt/β-catenin signaling. We found that, even though HOXD3 increased the expression of Wnt/β-catenin downstream genes, it did not restore Wnt/β-catenin signaling activity, which was inhibited in integrin β3 knockdown breast cancer cells. Conclusion: We demonstrate that HOXD3 plays a critical role in breast cancer stemness and drug resistance via integrin β3-mediated Wnt/β-catenin signaling. Our findings open the possibility for improving the current standard of care for breast cancer patients by designing targeted molecular therapies that overcome the barriers of cancer cell stemness and drug resistance.


Biomolecules ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 186 ◽  
Author(s):  
Sofia Piña Olmos ◽  
Roberto Díaz Torres ◽  
Eman Elbakrawy ◽  
Louise Hughes ◽  
Joseph Mckenna ◽  
...  

Breast cancer is the most commonly occurring cancer in women worldwide and the second most common cancer overall. The development of new therapies to treat this devastating malignancy is needed urgently. Nanoparticles are one class of nanomaterial with multiple applications in medicine, ranging from their use as drug delivery systems and the promotion of changes in cell morphology to the control of gene transcription. Nanoparticles made of the natural polymer chitosan are easy to produce, have a very low immunogenic profile, and diffuse easily into cells. One hallmark feature of cancer, including breast tumours, is the genome instability caused by defects in the spindle-assembly checkpoint (SAC), the molecular signalling mechanism that ensures the timely and high-fidelity transmission of the genetic material to an offspring. In recent years, the use of nanoparticles to treat cancer cells has gained momentum. This is in part because nanoparticles made of different materials can sensitise cancer cells to chemotherapy and radiotherapy. These advances prompted us to study the potential sensitising effect of chitosan-based nanoparticles on breast cancer cells treated with reversine, which is a small molecule inhibitor of Mps1 and Aurora B that induces premature exit from mitosis, aneuploidy, and cell death, before and after exposure of the cancer cells to X-ray irradiation. Our measurements of metabolic activity as an indicator of cell viability, DNA damage by alkaline comet assay, and immunofluorescence using anti-P-H3 as a mitotic biomarker indicate that chitosan nanoparticles elicit cellular responses that affect mitosis and cell viability and can sensitise breast cancer cells to X-ray radiation (2Gy). We also show that such a sensitisation effect is not caused by direct damage to the DNA by the nanoparticles. Taken together, our data indicates that chitosan nanoparticles have potential application for the treatment of breast cancer as adjunct to radiotherapy.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yanling Liu ◽  
Zijun Zhou ◽  
Jingzhe Yan ◽  
Xuefeng Wu ◽  
Guiying Xu

Background. Breast cancer is the common malignancy with high morbidity and mortality in women. S-phase kinase-associated protein 2 (Skp2) has been characterized to play an oncogenic role in the breast carcinogenesis and progression. Therefore, inactivation of Skp2 in breast cancer might be a novel approach for fighting breast malignancy. A natural compound diosgenin has been reported to exert anticancer activity in a variety of human cancers. However, the underlying mechanism has not been fully determined. Methods. In this study, we aim to explore whether diosgenin performed antitumor activity via inhibition of Skp2 in breast cancer cells using several methods including MTT, Transwell invasion assay, RT-PCR, western blotting, and transfection. Results. We found that diosgenin inhibited cell viability and stimulated apoptosis. Moreover, we found that diosgenin reduced cell invasion in breast cancer cells. Furthermore, diosgenin inhibited the expression of Skp2 in breast cancer cells. Notably, diosgenin reduced cell viability and motility and induced apoptosis via suppression of Skp2 in breast cancer cells. Conclusion. Our findings revealed that diosgenin could be a potential inhibitor of Skp2 for treating breast cancer.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Vikas Sehdev ◽  
James C. K. Lai ◽  
Alok Bhushan

Overexpression of HER-2 receptor is associated with poor prognosis and aggressive forms of breast cancer. Scientific literature indicates a preventive role of isoflavones in cancer. Since activation of HER-2 receptor initiates growth-promoting events in cancer cells, we studied the effect of biochanin A (an isoflavone) on associated signaling events like receptor activation, downstream signaling, and invasive pathways. HER-2-positive SK-BR-3 breast cancer cells, MCF-10A normal breast epithelial cells, and NIH-3T3 normal fibroblast cells were treated with biochanin A (2–100 μM) for 72 hours. Subsequently cell viability assay, western blotting and zymography were carried out. The data indicate that biochanin A inhibits cell viability, signaling pathways, and invasive enzyme expression and activity in SK-BR-3 cancer cells. Biochanin A did not inhibit MCF-10A and NIH-3T3 cell viability. Therefore, biochanin A could be a unique natural anticancer agent which can selectively target cancer cells and inhibit multiple signaling pathways in HER-2-positive breast cancer cells.


Open Biology ◽  
2016 ◽  
Vol 6 (12) ◽  
pp. 150262 ◽  
Author(s):  
Chin-Yo Lin ◽  
Erica L. Kleinbrink ◽  
Fabien Dachet ◽  
Juan Cai ◽  
Donghong Ju ◽  
...  

Long non-coding RNAs (lncRNAs) are transcripts of a recently discovered class of genes which do not code for proteins. LncRNA genes are approximately as numerous as protein-coding genes in the human genome. However, comparatively little remains known about lncRNA functions. We globally interrogated changes in the lncRNA transcriptome of oestrogen receptor positive human breast cancer cells following treatment with oestrogen, and identified 127 oestrogen-responsive lncRNAs. Consistent with the emerging evidence that most human lncRNA genes lack homologues outside of primates, our evolutionary analysis revealed primate-specific lncRNAs downstream of oestrogen signalling. We demonstrate, using multiple functional assays to probe gain- and loss-of-function phenotypes in two oestrogen receptor positive human breast cancer cell lines, that two primate-specific oestrogen-responsive lncRNAs identified in this study (the oestrogen-repressed lncRNA BC041455, which reduces cell viability, and the oestrogen-induced lncRNA CR593775, which increases cell viability) exert previously unrecognized functions in cell proliferation and growth factor signalling pathways. The results suggest that oestrogen-responsive lncRNAs are capable of altering the proliferation and viability of human breast cancer cells. No effects on cellular phenotypes were associated with control transfections. As heretofore unappreciated components of key signalling pathways in cancers, including the MAP kinase pathway, lncRNAs hence represent a novel mechanism of action for oestrogen effects on cellular proliferation and viability phenotypes. This finding warrants further investigation in basic and translational studies of breast and potentially other types of cancers, has broad relevance to lncRNAs in other nuclear hormone receptor pathways, and should facilitate exploiting and targeting these cell viability modulating lncRNAs in post-genomic therapeutics.


Author(s):  
Abolfazl Fattah ◽  
Ali Morovati ◽  
Zahra Niknam ◽  
Ladan Mashouri ◽  
Amirhooman Asadi ◽  
...  

Background: Piperine is a natural compound obtained from the Piper nigrum that exhibits anti-proliferative and anti-cancer activity in cancer cell lines. We analyzed the cytotoxic effect of piperine combined with cisplatin compound in the human MCF-7 breast cancer cell line and the underlying mechanism. Methods: The present in vitro study was performed on MCF-7 cell line in Jahrom University of Medical Sciences between, Jahrom, Iran from 2016 to 2017. Cultured MCF-7 cells were seeded into four groups: a control group (untreated group), a group treated with cisplatin, a group treated with piperine and a group treated with cisplatin and piperine. Cell viability was analyzed using the MTT assay method. Flow c-ytometric analysis was investigated for apoptosis. The mRNA and protein expression of the apoptotic regulators p53, Bcl-2, Bax, caspase 3 and caspase 9 were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis. Results: Piperine (20 and 30 µM) in combination with cisplatin (5, 10 and 15 µM) for 24 h synergistically inhibited cell viability of MCF-7 breast cancer cells more than piperine and cisplatin used alone. Synergistic antibreast cancer activities cisplatin (5 µM) and piperine (20 µM) were via inducing apoptosis. Piperine (20 µM) and cisplatin (5 µM) for 24 h induce apoptosis strongly through reduction of Bcl-2 and increase of caspase 3, p53, caspase 9, and Bax. Conclusion: Piperine in combination with cisplatin could trigger p53-mediated apoptosis more effective than cisplatin alone in MCF-7 breast cancer cells, reducing the toxic dose of cisplatin used in cancer chemotherapy.


Author(s):  
Kok Hao Chen ◽  
Jong Hyun Choi

Semiconductor nanocrystals have unique optical properties due to quantum confinement effects, and a variety of promising approaches have been devised to interface the nanomaterials with biomolecules for bioimaging and therapeutic applications. Such bio-interface can be facilitated via a DNA template for nanoparticles as oligonucleotides can mediate the aqueous-phase nucleation and capping of semiconductor nanocrystals.[1,2] Here, we report a novel scheme of synthesizing fluorescent nanocrystal quantum dots (NQDs) using DNA aptamers and the use of this biotic/abiotic nanoparticle system for growth inhibition of MCF-7 human breast cancer cells for the first time. Particularly, we used two DNA sequences for this purpose, which have been developed as anti-cancer agents: 5-GGT GGT GGT GGT TGT GGT GGT GGT GG-3 (also called, AGRO) and 5-(GT)15-3.[3–5] This study may ultimately form the basis of unique nanoparticle-based therapeutics with the additional ability to optically report molecular recognition. Figure 1a shows the photoluminescence (PL) spectra of GT- and AGRO-passivated PbS QD that fluoresce in the near IR, centered at approximately 980 nm. A typical synthesis procedure involves rapid addition of sodium sulfide in the mixture solution of DNA and Pb acetate at a molar ratio of 2:4:1. The resulting nanocrystals are washed to remove unreacted DNA and ions by adding mixture solution of NaCl and isopropanol, followed by centrifugation. The precipitated nanocrystals are collected and re-suspended in aqueous solution by mild sonication. Optical absorption measurements reveal that approximately 90 and 77% of GT and AGRO DNA is removed after the washing process. The particle size distribution in Figure 1b suggests that the GT sequence-capped PbS particles are primarily in 3–5 nm diameter range. These nanocrystals can be easily incorporated with mammalian cells and remain highly fluorescent in sub-cellular environments. Figure 1c serially presents an optical image of a MCF-7 cell and a PL image of the AGRO-capped QD incorporated with the cell. Figure 1. (a) Normalized fluorescence spectra of PbS QD synthesized with GT and AGRO sequences, which were previously developed as anti-cancer agents. The DNA-capped QD fluoresce in the near IR centered at ∼980 nm. (b) TEM image of GT-templated nanocrystals ranging 3–5 nm in diameter. (c) Optical image of an MCF-7 human breast cancer cell after a 12-hour exposure to aptamer-capped QD. (d) PL image of AGRO-QD incorporated with the cell, indicating that these nanocrystals remain highly fluorescent in sub-cellular environments. One immediate concern for interfacing inorganic nanocrystals with cells and tissue for labeling or therapeutics is their cytotoxicity. The nanoparticle cytotoxicity is primarily determined by material composition and surface chemistry, and QD are potentially toxic by generating reactive oxygen species or by leaching heavy metal ions when decomposed.[6] We examined the toxicity of aptamer-passivated nanocrystals with NIH-3T3 mouse fibroblast cells. The cells were exposed to PbS nanocrystals for 2 days before a standard MTT assay as shown in Figure 2, where there is no apparent cytotoxicity at these doses. In contrast, Pb acetate exerts statistically significant toxicity. This observation suggests a stable surface passivation by the DNA aptamers and the absence of appreciable Pb2+ leaching. Figure 2. Viability of 3T3 mouse fibroblast cells after a 2-day exposure to DNA aptamer-capped nanocrystals. There is no apparent dose-dependent toxicity, whereas a statistically significant reduction in cell viability is observed with Pb ions. Note that Pb acetate at 133 μM is equivalent to the Pb2+ amount that was used for PbS nanocrystal synthesis at maximum concentration. Error bars are standard deviations of independent experiments. *Statistically different from control (p&lt;0.005). Finally, we examined if these cyto-compatible nanoparticle-aptamers remained therapeutically active for cancer cell growth inhibition. The MTT assay results in Figure 3a show significantly decreased growth of breast cancer cells incorporated with AGRO, GT, and the corresponding templated nanocrystals, as anticipated. In contrast, 5-(GC)15-3 and the QDs synthesized with the same sequence, which were used as negative controls along with zero-dose control cells, did not alter cell viability significantly. Here, we define the growth inhibition efficacy as (100 − cell viability) per DNA of a sample, because the DNA concentration is significantly decreased during the particle washing. The nanoparticle-aptamers demonstrate 3–4 times greater therapeutic activities compared to the corresponding aptamer drugs (Figure 3b). We speculate that when a nanoparticle-aptamer is internalized by the cancer cells, it forms an intracellular complex with nucleolin and nuclear factor-κB (NF-κB) essential modulator, thereby inhibiting NF-κB activation that would cause transcription of proliferation and anti-apoptotic genes.[7] The nanoparticle-aptamers may more effectively block the pathways for creating anti-apoptotic genes or facilitate the cellular delivery of aptamers via nanoparticle uptake. Our additional investigation indicates that the same DNA capping chemistry can be utilized to produce aptamer-mediated Fe3O4 nanocrystals, which may be potentially useful in MRI and therapeutics, considering their magnetic properties and biocompatibility. In summary, the nanoparticle-based therapeutic schemes developed here should be valuable in developing a multifunctional drug delivery and imaging agent for biological systems. Figure 3. Anti-proliferation of MCF-7 human breast cancer cells with aptamer-passivated nanocrystals. (a) Viability of MCF-7 cells exposed to AGRO and GT sequences, and AGRO-/GT-capped QD for 7 days. The DNA concentration was 10 uM, while the particles were incubated with cells at 75 nM. (b) Growth inhibition efficacy is defined as (100 − cell viability) per DNA to correct the DNA concentration after particle washing.


Sign in / Sign up

Export Citation Format

Share Document