9. Biofilm formation in the dairy industry: applications to cheese

Author(s):  
M. Marino ◽  
F. Frigo ◽  
I. Bartolomeoli ◽  
M. Maifreni
Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 103
Author(s):  
Rodrigo Jiménez-Pichardo ◽  
Iriana Hernández-Martínez ◽  
Carlos Regalado-González ◽  
José Santos-Cruz ◽  
Yunny Meas-Vong ◽  
...  

Biofilms on food-contact surfaces can lead to recurrent contamination. This work aimed to study the biofilm formation process on stainless steel plates used in the dairy industry: 304 surface finish 2B and electropolished; and the effect of a cleaning and disinfection process using alkaline (AEW) and neutral (NEW) electrolyzed water. Milk fouling during heat processing can lead to type A or B deposits, which were analyzed for composition, surface energy, thickness, and roughness, while the role of raw milk microbiota on biofilm development was investigated. Bacteria, yeasts, and lactic acid bacteria were detected using EUB-338, PF2, and Str-493 probes, respectively, whereas Lis-637 probe detected Listeria sp. The genetic complexity and diversity of biofilms varied according to biofilm maturation day, as evaluated by 16S rRNA gene sequence, denaturing gradient gel electrophoresis, and fluorescence in situ hybridization microscopy. From analysis of the experimental designs, a cleaning stage of 50 mg/L NaOH of AEW at 30 °C for 10 min, followed by disinfection using 50 mg/L total available chlorine of NEW at 20 °C for 5 min is a sustainable alternative process to prevent biofilm formation. Fluorescence microscopy was used to visualize the effectiveness of this process.


Food Control ◽  
2018 ◽  
Vol 86 ◽  
pp. 241-248 ◽  
Author(s):  
Chiara Rossi ◽  
Annalisa Serio ◽  
Clemencia Chaves-López ◽  
Fabrizio Anniballi ◽  
Bruna Auricchio ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Regitze Renee Pedersen ◽  
Volker Krömker ◽  
Thomas Bjarnsholt ◽  
Kirstin Dahl-Pedersen ◽  
Rikke Buhl ◽  
...  

Bovine mastitis is one of the most important diseases in the dairy industry and has detrimental impact on the economy and welfare of the animals. Further, treatment failure results in increased antibiotic use in the dairy industry, as some of these mastitis cases for unknown reasons are not resolved despite standard antibiotic treatment. Chronic biofilm infections are notoriously known to be difficult to eradicate with antibiotics and biofilm formation could be a possible explanation for mastitis cases that are not resolved by standard treatment. This paper reviews the current literature on biofilm in bovine mastitis research to evaluate the status and methods used in the literature. Focus of the current research has been on isolates from milk samples and investigation of their biofilm forming properties in vitro. However, in vitro observations of biofilm formation are not easily comparable with the in vivo situation inside the udder. Only two papers investigate the location and distribution of bacterial biofilms inside udders of dairy cows with mastitis. Based on the current knowledge, the role of biofilm in bovine mastitis is still unclear and more in vivo investigations are needed to uncover the actual role of biofilm formation in the pathogenesis of bovine mastitis.


Author(s):  
Coralie Goetz ◽  
Jules Larouche ◽  
Maribel Velez Aristizabal ◽  
Nissa Niboucha ◽  
Julie Jean

The aim of this study was to evaluate the ability of microorganisms isolated from the dairy industry to form biofilms and to investigate the efficacity of organic peroxyacids (peracetic, perpropionic and perlactic acids and BioDestroy®) to eradicate those biofilms. Eighteen microorganisms were isolated from Quebec dairy processing plants that have issues associated with biofilm formation and were presumptively identified by MALDI-TOF mass spectrometry. The single-species biofilm-producing ability of the isolates was then evaluated using 96-well microplates. Eight out of eighteen (8/18) of these isolates were identified as moderate or strong biofilm producers, and ten out of eighteen (10/18) resulted as negative or weak biofilm producers. The efficacy of above-mentioned disinfectants was tested on the stronger biofilm producing bacteria using the MBEC (Minimum Biofilm Eradication Concentration) assay. After 5 min, all the disinfectants tested successfully eradicated both the single and mixed biofilms when applied following the recommended concentration. However, the efficacy of organic peroxyacids was significantly variable at lower concentrations. For example, 25 ppm of BioDestroy® were sufficient to eradicate all the biofilms, except for Pseudomonas azotoformans PFl1A. Unfortunately, microscopic observations highlighted those dead cells were still attached to the surfaces. In conclusion, our results suggest that some microorganisms found in dairy plants can produce tenacious biofilms that are, however, still susceptible to disinfectants, including organic peroxyacids. Further studies would be needed in order to confirm these observations using a dynamic method to mimic in vivo conditions. IMPORTANCE Biofilm forming microorganisms are a major issue in the food industry, including dairy industry, because of their negative impact on products quality. Biofilms are difficult to remove by clean-in-place (CIP) procedures commonly used in processing plants and may be less sensitive to sanitizers. Therefore, it is important to identify these microorganisms, in order to develop biofilm control strategies. The results gathered in the present study could contribute to this aim, even though it was carried out using only static methods.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
María-Guadalupe Avila-Novoa ◽  
Maricarmen Iñíguez-Moreno ◽  
Oscar-Alberto Solís-Velázquez ◽  
Jean-Pierre González-Gómez ◽  
Pedro-Javier Guerrero-Medina ◽  
...  

Staphylococcus aureus is an important food-borne pathogen able to form biofilms. This pathogen is responsible for outbreaks of food-borne illnesses associated with the consumption of milk and dairy products. The aim of this study was to evaluate the biofilm-forming ability of S. aureus isolates, recovered from food contact surfaces in the dairy industry of Jalisco, Mexico. A total of 84 S. aureus strains were evaluated. The isolates were characterized phenotypically by culture on Congo red agar plates. The ability of the strains to form biofilms was investigated in 96-well flat-bottomed microtiter polystyrene plates. Stainless-steel coupons were used as an experimental surface. Biofilm formation was observed, using epifluorescence microscopy and scanning electron microscopy. Detection of the icaADBC genes in S. aureus was performed by the PCR technique. A total of 52.3% (44/84) of the S. aureus strains contained the icaADBC gene that synthesizes polysaccharide intercellular adhesion (PIA) molecules. On Congo red agar, 75% (63/84) of the S. aureus isolates were biofilm producers, 16.6% (14/84) were non-biofilm formers, and 8.3% (7/84) showed a noncharacteristic phenotype. The biofilm production of the S. aureus strains SA-4E, SA-9, SA-13, and SA-19 on stainless-steel coupons was investigated at 25°C for 8 days, and the detected cell population density was approximately 7.15–7.82 log CFU cm−2. In addition to the ability of biofilm production, it is important to highlight that these strains are potential enterotoxin producers as se genes have been previously detected in their genomes. A part of the ability of biofilm production and the determination of the presence of virulence determinants in the genome of S. aureus can contribute to the pathogenicity of strains. Therefore, vigilant food safety practices need to be implemented in the dairy industries regarding FCS to prevent food-borne infections and intoxications due to S. aureus contamination.


2021 ◽  
Vol 87 (8) ◽  
Author(s):  
Murali Kumar ◽  
Steve Flint ◽  
Jon Palmer ◽  
Sawatdeenaruenat Chanapha ◽  
Chris Hall

ABSTRACT Geobacillus species are important contaminants in the dairy industry, and their presence is often considered an indicator of poor plant hygiene with the potential to cause spoilage. They can form heat-resistant spores that adhere to surfaces of processing equipment and germinate to form biofilms. Therefore, strategies aimed toward preventing or controlling biofilm formation in the dairy industry are desirable. In this study, we demonstrated that the preferred temperature for biofilm and spore formation among Geobacillus stearothermophilus A1, D1, P3, and ATCC 12980 was 65°C. Increasing the total dissolved milk solid concentration to 20% (wt/vol) caused an apparent delay in the onset of biofilm and spore formation to detectable concentrations among all the strains at 55°C. Compared to the onset time of the biofilm formation of A1 in 10% (wt/vol) reconstituted skim milk, addition of milk protein (whey protein and sodium caseinate) caused an apparent delay in the onset of biofilm formation to detectable concentrations by an average of 10 h at 55°C. This study proposes that temperature and total dissolved solid concentration have a cumulative effect on biofilm and spore formation by G. stearothermophilus A1, D1, P3, and ATCC 12980. In addition, the findings from this study may indicate that preconditioning of stainless steel surfaces with adsorbed milk proteins may delay the onset of biofilm and spore formation by thermophilic bacteria during milk powder manufacture. IMPORTANCE The thermophilic bacillus Geobacillus stearothermophilus is a predominant spoilage bacterium in milk powder manufacturing plants. If its numbers exceed the accepted levels, financial losses may be incurred because of the need to lower the price of the end product. Furthermore, G. stearothermophilus bacilli can form heat-resistant spores which adhere to processing surfaces and can germinate to form biofilms. Previously conducted research had highlighted the variation in the spore and biofilm formation among three specific strains of G. stearothermophilus isolated from a milk powder manufacturing plant in New Zealand. The significance of our research is in demonstrating the effects of two abiotic factors, namely, temperature and total dissolved solid concentration, on biofilm and spore formation by these three dairy isolates, leading to modifications in the thermal processing steps aimed toward controlling biofilm and spore formation by G. stearothermophilus in the dairy industry.


2011 ◽  
pp. 567-574
Author(s):  
H.S. Garcia ◽  
A. López-Hernandez ◽  
C.G. Hill

Author(s):  
Steve Flint ◽  
Phil Bremer ◽  
John Brooks ◽  
Jon Palmer ◽  
Sara Burgess ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document