Effects of the probiotic Enterococcus faecium NCIMB 10415 on selected lactic acid bacteria and enterobacteria in co-culture

2015 ◽  
Vol 6 (3) ◽  
pp. 345-352 ◽  
Author(s):  
I.C. Starke ◽  
J. Zentek ◽  
W. Vahjen

Enterococcus faecium NCIMB 10415 is used as a probiotic for piglets and has been shown to modify the porcine intestinal microbiota. However, the mode of action of this probiotic modification is still unclear. One possible explanation is the direct growth inhibiting or stimulating effect of the probiotic on other indigenous bacteria. Therefore, the aim of the present study was to examine the growth interactions of the probiotic with different indigenous porcine bacteria in vitro. Reference strains were cultivated with the probiotic E. faecium strain NCIMB10415 (SF68) in a checkerboard assay with 102 to 105 cells/ml inoculum per strain. Growth kinetics were recorded for 8 h and used to determine specific growth of the co-cultures. Additionally, total DNA was extracted from the co-cultures at the end of the incubation to verify which strain in the co-culture was affected. Co-cultivation with eight Enterococcus spp. tester strains showed strain-specific growth differences. Three of four E. faecium strains were not influenced by the probiotic strain. PCR results showed reduced growth of the probiotic strain in co-culture with E. faecium DSM 6177. Three of four Enterococcus faecalis strains showed reduced specific growth in co-culture with the probiotic strain. However, E. faecalis DSM 20478 impaired growth of the probiotic E. faecium strain. The growth of Lactobacillus johnsonii DSM 10533 and Lactobacillus reuteri DSM 20016 was enhanced in co-culture with the probiotic strain, but co-cultivations with Lactobacillus mucosae DSM13345 or Lactobacillus amylovorus DSM10533 showed no differences. Co-cultures with the probiotic E. faecium showed no impact on the growth rate of four different enterobacterial reference strains (2 strains of Salmonella enterica and 2 strains of Escherichia coli), but PCR results showed reduced cell numbers for a pathogenic E. coli isolate at higher concentration of the probiotic strain. As the in vitro effect of the probiotic E. faecium on enterococci was strain specific and the growth of certain Lactobacillus spp. was enhanced by the probiotic, these results indicate a direct effect of the probiotic on certain members of the porcine gastro intestinal microbiota.

2008 ◽  
Vol 74 (19) ◽  
pp. 6032-6040 ◽  
Author(s):  
Anna Rosander ◽  
Eamonn Connolly ◽  
Stefan Roos

ABSTRACT The spread of antibiotic resistance in pathogens is primarily a consequence of the indiscriminate use of antibiotics, but there is concern that food-borne lactic acid bacteria may act as reservoirs of antibiotic resistance genes when distributed in large doses to the gastrointestinal tract. Lactobacillus reuteri ATCC 55730 is a commercially available probiotic strain which has been found to harbor potentially transferable resistance genes. The aims of this study were to define the location and nature of β-lactam, tetracycline, and lincosamide resistance determinants and, if they were found to be acquired, attempt to remove them from the strain by methods that do not genetically modify the organism before subsequently testing whether the probiotic characteristics were retained. No known β-lactam resistance genes was found, but penicillin-binding proteins from ATCC 55730, two additional resistant strains, and three sensitive strains of L. reuteri were sequenced and comparatively analyzed. The β-lactam resistance in ATCC 55730 is probably caused by a number of alterations in the corresponding genes and can be regarded as not transferable. The strain was found to harbor two plasmids carrying tet(W) tetracycline and lnu(A) lincosamide resistance genes, respectively. A new daughter strain, L. reuteri DSM 17938, was derived from ATCC 55730 by removal of the two plasmids, and it was shown to have lost the resistances associated with them. Direct comparison of the parent and daughter strains for a series of in vitro properties and in a human clinical trial confirmed the retained probiotic properties of the daughter strain.


2013 ◽  
Vol 4 (4) ◽  
pp. 345-356 ◽  
Author(s):  
I.C. Starke ◽  
R. Pieper ◽  
K. Neumann ◽  
J. Zentek ◽  
W. Vahjen

Pregnant gilts were fed the probiotic Enterococcus faecium NCIMB10415 (SF68) one month before birth of piglets. DNA extracts of sow faeces taken in weekly intervals as well as extracts from the intestine of their offspring during the suckling period at 12 and 26 days of life were analysed by denaturing gradient gel electrophoresis (DGGE) and quantitative PCR. DGGE profiles of faecal bacterial communities from three out of six probiotic-fed sows were distinctly different from the control and other probiotic-fed sows at all time points after probiotic supplementation. The probiotic-fed sows and their offspring were therefore divided into non-responder (n=3) and responder (n=3) groups. The probiotic strain significantly increased faecal lactobacilli cell numbers in mother sows, which could be assigned to a significant increase of Lactobacillus amylovorus and Lactobacillus acidophilus. Responding sows showed a more pronounced increase than non-responding sows. Similarly, suckling piglets from non-responding and responding sows showed numeric and significant differences for different bacterial groups and species. DGGE profiles of suckling piglets from responding sows also grouped more closely than profiles from control animals. Non-metric multiscaling of suckling piglets showed the same tendency for suckling piglets, but not for post-weaning piglets. This study showed that the probiotic E. faecium strain modified the faecal microbiota of sows. This modification is carried over to their offspring, but leads to changes that do not mirror the quantitative composition in the mother sow. Individual variations in the bacterial composition of mother sows before probiotic feed intake may influence the impact of a probiotic in sows and their offspring.


2020 ◽  
Vol 7 (4) ◽  
pp. 154
Author(s):  
Giovanni Cilia ◽  
Filippo Fratini ◽  
Elena della Buona ◽  
Fabrizio Bertelloni

Environmental resistance is an important factor for understanding the epidemiology of leptospirosis. Recently, new Leptospira hosts were identified, including also marine mammals. Moreover, halotolerant Leptospira strain, isolated from the environment and animals, highlighted the capability of this microorganism to persist in the seawater. The aim of this research was to investigate the bacteriostatic and bactericidal effect of salt on Leptospira strains belonging to 16 different serovars. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were verified through the microdilutions method starting from a 20% sodium chloride concentration. MIC values obtained were between 0.3125% and 10% of salt, while MBC values between 0.625% and >20%. Icterohaemorrhagiae (MIC: 0.3125%; MBC: 0.625%) resulted the most inhibited serovar, while the most resistant was Tarassovi (MIC: 10%; MBC: >20%). Interestingly, trends were reported for Pomona (MIC: 1.25%; MBC: >20%) and Bratislava (MIC: 0.625%; MBC: 20%), highlighting low MIC values but high MBC values. This is the first investigation aimed at the in vitro effect of salt on the growth of Leptospira spp. reference strains.


2019 ◽  
Vol 10 (2) ◽  
pp. 1132-1145 ◽  
Author(s):  
Meiling Liu ◽  
Xiuxia Zhang ◽  
Yunpeng Hao ◽  
Jinhua Ding ◽  
Jing Shen ◽  
...  

Multiple articles have confirmed that an imbalance of the intestinal microbiota is closely related to aberrant immune responses of the intestines and to the pathogenesis of inflammatory bowel diseases (IBDs).


2012 ◽  
Vol 57 (No. 11) ◽  
pp. 529-539 ◽  
Author(s):  
K. Saelim ◽  
N. Sohsomboon ◽  
S. Kaewsuwan ◽  
S. Maneerat

A bacteriocin-like substance (BLS) producing Enterococcus faecium CE5-1 was isolated from the gastrointestinal tract (GIT) of Thai indigenous chickens. Investigations of its probiotic potential were carried out. The competition between the BLS probiotic strain and antibiotic-resistant enterococci was also studied. Ent. faecium CE5-1 exhibited a good tolerance to pH 3.0 after 2 h and in 7% fresh chicken bile after 6 h, but the viability of Ent. faecium CE5-1 decreased by about 2–3 log CFU/ml after 2 h incubation in pH 2.5. It was susceptible to the antibiotics tested (tetracycline, erythromycin, penicillin G, and vancomycin). The maximum BLS production from Ent. faecium CE5-1 was observed at 15 h of cultivation. It showed activity against Listeria monocytogenes DMST17303, Pediococcus pentosaceus 3CE27, Lactobacillus sakei subsp. sakei JCM1157, and antibiotic-resistant enterococci. The detection by polymerase chain reaction (PCR) in the enterocin structural gene determined the presence of enterocin A gene in Ent. faecium CE5-1 only. Ent. faecium CE5-1 showed the highest inhibitory activity against two antibiotic-resistant Ent. faecalis VanB (from 6.68 to 4.29 log CFU/ml) and Ent. gallinarum VanC (from 6.76 to 4.31 log CFU/ml) after 12 h of co-cultivation. The results show the future possible use of Ent. faecium CE5-1 as a probiotic strain for livestock to control antibiotic-resistant enterococci.  


2004 ◽  
Vol 42 (10) ◽  
pp. 1601-1609 ◽  
Author(s):  
Cheng-Chih Tsai ◽  
Tseng-Huang Liu ◽  
Ming-Hui Chen ◽  
Chin-Chuan Tsai ◽  
Hau-Yang Tsen

2000 ◽  
Vol 63 (10) ◽  
pp. 1333-1337 ◽  
Author(s):  
M. CARINA AUDISIO ◽  
GUILLERMO OLIVER ◽  
MARÍA C. APELLA

Enterococcus faecium J96 was isolated from a healthy free-range chicken and it inhibited Salmonella Pullorum, in vitro, due to its lactic acid and bacteriocin production. In vivo assays were carried out with 30-h-old broiler chicks. The lactic acid bacteria (∼1 × 109 cells per chick) were orally administered as preventive and as therapeutic treatments. In the first case they were given to the chicks twice a day for 3 consecutive days. In the second case the lactic bacteria were administered in the same way after a 24-h challenge by Salmonella Pullorum (in both instances the salmonella dose was 1 × 105 cells per chick). Cecal contents, liver, and spleens were analyzed and liver and spleen fragments were also fixed in formaldehyde (pH 7.00) in order to determine salmonella translocation. The chickens that were preventively treated with E. faecium J96 survived the Salmonella Pullorum challenge. Those that were infected on the first day and then inoculated with lactic bacteria died 4 days later. Salmonellae were isolated from their livers and spleens. From these results we may conclude that E. faecium J96 can protect newly hatched chicks from Salmonella Pullorum infection but cannot act as a good therapeutic agent.


1997 ◽  
Vol 41 (5) ◽  
pp. 931-935 ◽  
Author(s):  
B Fantin ◽  
R Leclercq ◽  
L Garry ◽  
C Carbon

The influence of inducible cross-resistance to macrolides, lincosamides, and streptogramin B (MLS(B)) type antibiotics (inducible MLS(B) phenotype) on the activity of quinupristin-dalfopristin was investigated against Enterococcus faecium in vitro and in rabbits with experimental endocarditis. In vitro, quinupristin-dalfopristin displayed bacteriostatic and bactericidal activities against a MLS(B)-susceptible strain similar to those against two strains with the inducible MLS(B) phenotype. In addition, induction of the two MLS(B)-resistant strains with quinupristin (0.016 to 1 microg/ml) or quinupristin-dalfopristin (0.08 to 0.25 microg/ml) increased the MICs of quinupristin from 8 microg/ml to 32 to > 128 microg/ml, but did not modify the MIC of dalfopristin (2 microg/ml) or quinupristin-dalfopristin (0.5 microg/ml). In a rabbit endocarditis model, quinupristin-dalfopristin was as active as amoxicillin against the MLS(B)-susceptible E. faecium strain. In contrast, the activity of quinupristin-dalfopristin was significantly decreased in animals infected with either of the two inducible MLS(B)-resistant strains (P < 0.05), although no mutants resistant to quinupristin-dalfopristin were detected. Against the clinical strain with the inducible MLS(B) phenotype, quinupristin-dalfopristin was not effective and was less active than amoxicillin (P < 0.001); however, the activity of the combination of amoxicillin and dalfopristin-quinupristin was superior to that of amoxicillin (P < 0.01). The different impact of the inducible MLS(B) phenotype in E. faecium on the activity of quinupristin-dalfopristin in vitro and in experimental endocarditis may be related to the reduced diffusion of dalfopristin compared with that of quinupristin into cardiac vegetations that we previously reported. This result emphasizes the importance of the constant presence of dalfopristin at the site of infection to ensure synergism with quinupristin.


2010 ◽  
Vol 1 (3) ◽  
pp. 265-270 ◽  
Author(s):  
E. Tarasova ◽  
E. Yermolenko ◽  
V. Donets ◽  
Z. Sundukova ◽  
A. Bochkareva ◽  
...  

The animal model of intestinal dysbiosis induced by antibiotics was created. Dysbiotic condition was confirmed by the changes in titre of the indigenous microbiota (excessive growth of opportunistic microorganisms and reduced number of lactobacilli, bifidobacteria and enterococci) and the appearance of dyspeptic symptoms. Consumption of the fermented milk product with probiotic strain Enterococcus faecium L5 led to the rapid disappearance of dysbiosis symptoms, normalisation of the microbiota, increase in expression of IL-10 and decrease in IL-8 expression.


Sign in / Sign up

Export Citation Format

Share Document