Microbial reduction of zearalenone by a new isolated Lysinibacillus sp. ZJ-2016-1

2018 ◽  
Vol 11 (4) ◽  
pp. 571-578 ◽  
Author(s):  
J.Q. Wang ◽  
F. Yang ◽  
P.L. Yang ◽  
J. Liu ◽  
Z.H. Lv

Zearalenone (ZEA) has a strong reproductive toxicity. Reducing and eliminating ZEA from food and feed is of great significance. The aim of the present study was to screen bacteria for reduction of ZEA. A pure culture of strain ZJ-2016-1, identified as Lysinibacillus sp. by 16S rRNA gene sequence analysis methods, was isolated from chicken large intestine digesta and showed to be effective in eliminating ZEA; 32 μg/ml of ZEA in Luria-Bertani medium was completely removed within 48 h by whole cells of ZJ-2016-1. Heating treatment significantly reduced the removal rate of ZEA from 95.8 to 10.4% in the culture supernatant, suggesting that the microbial reduction of ZEA was likely enzymatic. The optimal conditions for the microbial reduction of ZEA by ZJ-2016-1 included temperature of 37 °C and pH of 7.0. To sum up, these results indicated that the Lysinibacillus strain is a promising bacterium resource for reducing ZEA, and its genes and enzymes involved in microbial reduction of ZEA should be further explored.

2021 ◽  
Author(s):  
Yu-nan Liu ◽  
Meng-yu Wei ◽  
Chao Wang ◽  
Zhi-Tang Lyu ◽  
Xiumin zhang ◽  
...  

Abstract A novel Gram-positive, strictly aerobic, rod-shaped, orange-pigmented bacterial strain, designated R-1-5s-1T, was isolated from Baiyangdian Lake, China. Strain R-1-5s-1T grew at 15-37℃ (optimum 37℃) and pH 7-11 (optimum pH 8) in Luria-Bertani medium. Based on 16S rRNA gene sequence analysis, strain R-1-5s-1T was assigned to the genus Jeotgalibacillus and showed the closest relationships with Jeotgalibacillus salarius ASL-1T (97.69%), Jeotgalibacillus alkaliphilus JC303T (97.29%), Jeotgalibacillus marinus DSM 1297T (97.15%), Jeotgalibacillus campisalis SF-57T (97.01%), and Jeotgalibacillus spp. (≤ 97%). The predominant polar lipids were phosphatidylglycerol and diphosphatidylglycerol; the major cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C17:0, and anteiso-C17:0; and the major respiratory quinones were MK-7 and MK-8. The peptidoglycan type of the cell wall was A1a linked via L-lysine as the diamino acid. The G+C content was 43.6%, and the draft genome size of strain R-1-5s-1T was 3.4 Mbp. Between strain R-1-5s-1T and the related strain J. salarius ASL-1T, the ANI and dDDH relatedness values were 78.9% and 20.8%, respectively. Phylogenetic, chemotaxonomic, and genotypic analyses revealed that strain R-1-5s-1T is a novel species in the genus Jeotgalibacillus, for which the name Jeotgalibacillus auranticolor sp. nov. is proposed. The type strain is R-1-5s-1T (=CGMCC 1.13567T=KCTC 43038T).


2009 ◽  
Vol 75 (10) ◽  
pp. 3348-3351 ◽  
Author(s):  
Jill Tomaras ◽  
Jason W. Sahl ◽  
Robert L. Siegrist ◽  
John R. Spear

ABSTRACT Microbial diversity of septic tank effluent (STE) and the biomat that is formed as a result of STE infiltration on soil were characterized by 16S rRNA gene sequence analysis. Results indicate that microbial communities are different within control soil, STE, and the biomat and that microbes found in STE are not found in the biomat. The development of a stable soil biomat appears to provide the best on-site water treatment or protection for subsequent groundwater interactions of STE.


2006 ◽  
Vol 56 (5) ◽  
pp. 1085-1088 ◽  
Author(s):  
Soon Dong Lee

A novel actinomycete, strain N3-7T, was isolated from a natural cave in Jeju, Republic of Korea, using a dilution method and was subjected to characterization using polyphasic taxonomy. A 16S rRNA gene sequence analysis revealed that the organism belonged to the phylogenetic cluster of the genus Actinocorallia and was most closely related to Actinocorallia glomerata and Actinocorallia longicatena (97.6 and 97.5 % similarity, respectively). The main chemotaxonomic properties of strain N3-7T, such as the principal amino acid of the peptidoglycan, the predominant menaquinone and the polar lipid profile, supported classification in the genus Actinocorallia. The organism was readily differentiated from Actinocorallia species with validly published names on the basis of a broad range of phenotypic properties. Thus the isolate represents a novel species of the genus Actinocorallia, for which the name Actinocorallia cavernae sp. nov. is proposed. The type strain is strain N3-7T (=JCM 13278T=NRRL B-24429T).


2010 ◽  
Vol 60 (4) ◽  
pp. 949-952 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Rangasamy Anandham ◽  
Seung-Hee Yoo ◽  
...  

An ivory-coloured bacterium, designated strain 5YN7-3T, was isolated from a wetland, Yongneup, Korea. Cells of the strain were aerobic, Gram-stain-negative, non-motile and short rods. 16S rRNA gene sequence analysis demonstrated that strain 5YN7-3T belongs to the order Rhizobiales of the class Alphaproteobacteria and is closely related to Kaistia soli 5YN9-8T (97.8 %), Kaistia granuli Ko04T (97.6 %) and Kaistia adipata Chj404T (97.4 %). Strain 5YN7-3T showed DNA–DNA hybridization values of 28, 22 and 35 % with K. granuli Ko04T, K. soli 5YN9-8T and K. adipata Chj404T, respectively. The major fatty acids were C18 : 1 ω7c (51.2 %), C19 : 0 cyclo ω8c (25.0 %), C18 : 0 (12.9 %) and C16 : 0 (10.8 %) (>10 % of total fatty acids). Ubiquinone-10 was the major isoprenoid quinone and the DNA G+C content was 66.5 mol%. The phenotypic characteristics in combination with 16S rRNA gene sequence analysis and DNA–DNA hybridization data clearly define strain 5YN7-3T as a novel species of the genus Kaistia, for which the name Kaistia terrae sp. nov. is proposed. The type strain is 5YN7-3T (=KACC 12910T =DSM 21341T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2588-2593 ◽  
Author(s):  
Bárbara Almeida ◽  
Ivone Vaz-Moreira ◽  
Peter Schumann ◽  
Olga C. Nunes ◽  
Gilda Carvalho ◽  
...  

A Gram-positive, aerobic, non-motile, non-endospore-forming rod-shaped bacterium with ibuprofen-degrading capacity, designated strain I11T, was isolated from activated sludge from a wastewater treatment plant. The major respiratory quinone was demethylmenaquinone DMK-7, C18 : 1 cis9 was the predominant fatty acid, phosphatidylglycerol was the predominant polar lipid, the cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid and the G+C content of the genomic DNA was 74.1 mol%. On the basis of 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of strain I11T were Patulibacter ginsengiterrae CECT 7603T (96.8 % similarity), Patulibacter minatonensis DSM 18081T (96.6 %) and Patulibacter americanus DSM 16676T (96.6 %). Phenotypic characterization supports the inclusion of strain I11T within the genus Patulibacter (phylum Actinobacteria) . However, distinctive features and 16S rRNA gene sequence analysis suggest that is represents a novel species, for which the name Patulibacter medicamentivorans sp. nov. is proposed. The type strain is I11T ( = DSM 25962T = CECT 8141T).


2007 ◽  
Vol 57 (2) ◽  
pp. 293-296 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Maki Kitahara ◽  
Yoshimi Benno

A bacterial strain isolated from human faeces, M-165T, was characterized in terms of its phenotypic and biochemical features, cellular fatty acid profile, menaquinone profile and phylogenetic position (based on 16S rRNA gene sequence analysis). A 16S rRNA gene sequence analysis showed that the isolate was a member of the genus Parabacteroides. Strain M-165T was closely related to Parabacteroides merdae strains, showing 98 % sequence similarity. The strain was obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative, rod-shaped and was able to grow on media containing 20 % bile. Although the phenotypic characteristics of the strain M-165T were similar to those of P. merdae, the isolate could be differentiated from P. merdae by means of API 20A tests for l-arabinose and l-rhamnose fermentation. DNA–DNA hybridization experiments revealed the genomic distinctiveness of the novel strain with respect to P. merdae JCM 9497T (⩽60 % DNA–DNA relatedness). The DNA G+C content of the strain is 47.6 mol%. On the basis of these data, strain M-165T represents a novel species of the genus Parabacteroides, for which the name Parabacteroides johnsonii sp. nov. is proposed. The type strain is M-165T (=JCM 13406T=DSM 18315T).


Author(s):  
Olga I. Nedashkovskaya ◽  
Seung Bum Kim ◽  
Suk Kyun Han ◽  
Cindy Snauwaert ◽  
Marc Vancanneyt ◽  
...  

Three novel heterotrophic, Gram-negative, yellow-pigmented, aerobic, gliding, oxidase- and catalase-positive bacteria were isolated from algae collected in the Gulf of Peter the Great, Sea of Japan. 16S rRNA gene sequence analysis revealed that the strains studied represented members of the family Flavobacteriaceae and showed 93·5–93·8 % similarity with their closest relative, Psychroserpens burtonensis. The DNA G+C content of the strains was 34–37 mol%. The major respiratory quinone was MK-6. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C15 : 1, iso-C16 : 0-3OH and iso-C17 : 0-3OH. On the basis of their phenotypic, chemotaxonomic, genotypic and phylogenetic characteristics, the newly described bacteria have been assigned to the new genus Winogradskyella gen. nov., as Winogradskyella thalassocola sp. nov. (type strain, KMM 3907T=KCTC 12221T=LMG 22492T=DSM 15363T), Winogradskyella epiphytica sp. nov. (type strain, KMM 3906T=KCTC 12220T=LMG 22491T=CCUG 47091T) and Winogradskyella eximia sp. nov. (type strain, KMM 3944T (=KCTC 12219T=LMG 22474T).


2004 ◽  
Vol 54 (4) ◽  
pp. 1055-1061 ◽  
Author(s):  
Carole Feurer ◽  
Dominique Clermont ◽  
François Bimet ◽  
Adina Candréa ◽  
Mary Jackson ◽  
...  

Nine unidentified Gram-positive, lipophilic corynebacteria were isolated from clinical and food samples and subjected to a polyphasic taxonomic analysis. The bacteria were distinguished from Corynebacterium species with validly published names by biochemical tests, fatty acid content and whole-cell protein analysis. Comparative 16S rRNA gene sequence analysis demonstrated unambiguously that the nine strains were related phylogenetically to the species ‘Corynebacterium tuberculostearicum’ and represented a distinct subline within the genus Corynebacterium. On the basis of both phenotypic and phylogenetic evidence, the formal description of Corynebacterium tuberculostearicum sp. nov. is proposed. The type strain of C. tuberculostearicum is Medalle XT (=LDC-20T=CIP 107291T=CCUG 45418T=ATCC 35529T).


Sign in / Sign up

Export Citation Format

Share Document