Encapsulation of hemin in Fe-based metal-organic frameworks and its application for the direct determination of aflatoxin M1

2021 ◽  
pp. 1-10
Author(s):  
F. Jahangiri-Dehaghani ◽  
H.R. Zare ◽  
Z. Shekari

A label-free electrochemical aptasensor was constructed for the sensitive and selective determination of AFM1. For preparation of the aptasensor, the AFM1 aptamer was immobilised on the surface of a glassy carbon electrode modified with hemin encapsulated in Fe-based metal-organic frameworks (hemin@Fe-MIL-101). The morphology and the structure of Fe-MIL-101 and hemin@Fe-MIL-101 were evaluated by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction and Brunauer-Emmett-Teller-N2 sorption methods. Electrochemical impedance spectroscopy and cyclic voltammetry were performed to monitor the fabrication process of the electrochemical aptasensor. The electrochemical reduction current of hemin encapsulated in Fe-MIL-101 serves as a signal for the quantitative determination of AFM1. Differential pulse voltammetry was done to determine the AFM1 concentration in the linear range of 1.0×10-1-100.0 ng/ml. The detection limit of AFM1 was estimated to be 4.6×10-2 ng/ml. Finally, the fabricated aptasensor was applied to determine AFM1 in raw and boiled milk samples.

Author(s):  
Ashraf Mahmoud ◽  
Mater Mahnashi ◽  
Samer Abu-Alrub ◽  
Saad Kahatani ◽  
Mohamed El-Wekil

Abstract An innovative and reliable electrochemical sensor was proposed for simple, sensitive and selective determination of F- ions. The sensor is based on the fabrication of porous and electroactive Fe-based metal organic frameworks [MIL-101(Fe)]. It was blended with graphite powder and liquid paraffin oil to from carbon paste electrode (CPE). The MIL-101(Fe)@CPE was characterized using different techniques such as scanning electron microscope, powder X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray, cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry. The MIL-101(Fe)@CPE exhibited two redox peaks (anodic and cathodic) corresponding to Fe3+ and Fe2+, respectively. The determination of F- ions based on the formation of a stable fluoroferric complex with Fe3+/ Fe2+, decreasing the currents of redox species. It was found that the anodic peak current (Ipa) is linearly proportional to the concentration of F- in the range of 0.67-130 µM with a limit of detection (S/N=3) of 0.201 µM. The electrode exhibited good selectivity towards F- detection with no significant interferences from common anions. The as-fabricated sensor was applied for the determination of F- in environmental water samples with recoveries % and RSDs % in the range of 98.1-102.4 % and 2.4-3.7 %, respectively.


2013 ◽  
Vol 11 (7) ◽  
pp. 1172-1186 ◽  
Author(s):  
Mir Majidi ◽  
Reza Baj ◽  
Abdolhossein Naseri

AbstractRoom temperature 1-butyl-3-methylimidazolium tetraflouroborate ([BMIM][BF4]) ionic liquid was employed for dispersion of multi walled carbon nanotubes (MWCNTs) and the formation of nanocomposite on the surface of a carbon-ceramic electrode. The surface of the modified electrode was characterized using scanning electron microscopy and electrochemical impedance spectroscopy. The modified electrode exhibited excellent electrochemical activity to oxidation of dopamine (DA); whereas electro oxidation of ascorbic acid (AA) was not seen and electro oxidation of uric acid (UA) appeared at a more positive potential than DA. The multi walled carbon nanotube-ionic liquid nanocomposite modified carbon-ceramic electrode was used for the selective determination of DA in the presence of high levels of AA and UA using differential pulse voltammetry. The calibration curve for DA was linear in the range of 3.00 to 130 µM with the detection limit (S/N=3) of 0.87 µM. The present electrode was successfully applied to the determination of DA in some commercial pharmaceutical samples and human blood serum.


2020 ◽  
Vol 23 ◽  
pp. 243-258 ◽  
Author(s):  
Shokoufeh Hassani ◽  
Armin Salek Maghsoudi ◽  
Milad Rezaei Akmal ◽  
Soheila Rahmani Rahmani ◽  
Pouria Sarihi ◽  
...  

Purpose: The current project aimed to design a simple, highly sensitive, and economical label-free electrochemical aptasensor for determination of prostate-specific antigen (PSA), as the gold standard biomarker for prostate cancer diagnosis. The aptasensor was set up using a screen-printed carbon electrode (SPCE) modified by gold nanoparticles (Au NPs) conjugated to thiolated aptamers. Methods: Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were implemented for electrochemical (EC) characterization of the aptasensor. The determination of PSA was also performed through differential pulse voltammetry (DPV) in [Fe (CN) 6]3-/4- electrolyte solution. Results: The present aptasensor was shown an outstanding linear response in the concentration range of 1 pg/mL - 200 ng/mL with a remarkably lower limit of detection of 0.077 pg/mL. The optimum concentration for PSA separation and the optimum incubation time for antigen-aptamer binding were determined by observing and electing the highest electrochemical responses in a specified time or concentration. Conclusion: According to the results of the specificity tests, the designed aptasensor did not show any significant interactions with other analytes in real samples. Clinical functionality of the aptasensor was appraised in serum samples of healthy individuals and patients examining the PSA level through the fabricated aptasensor and the reference methods. Both methods are comparable in sensitivity. The present fabricated PSA aptasensor with substantial characteristics of ultra-sensitivity and cost-effectiveness can be conventionally built and used for the routine check-up of the men for prostate problems.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1975
Author(s):  
Isabel Seguro ◽  
João G. Pacheco ◽  
Cristina Delerue-Matos

In this work, a disposable electrochemical (voltammetric) molecularly imprinted polymer (MIP) sensor for the selective determination of diclofenac (DCF) was constructed. The proposed MIP-sensor permits fast (30 min) analysis, is cheap, easy to prepare and has the potential to be integrated with portable devices. Due to its simplicity and efficiency, surface imprinting by electropolymerization was used to prepare a MIP on a screen-printed carbon electrode (SPCE). MIP preparation was achieved by cyclic voltammetry (CV), using dopamine (DA) as a monomer in the presence of DCF. The differential pulse voltammetry (DPV) detection of DCF at MIP/SPCE and non-imprinted control sensors (NIP) showed an imprinting factor of 2.5. Several experimental preparation parameters were studied and optimized. CV and electrochemical impedance spectroscopy (EIS) experiments were performed to evaluate the electrode surface modifications. The MIP sensor showed adequate selectivity (in comparison with other drug molecules), intra-day repeatability of 7.5%, inter-day repeatability of 11.5%, a linear range between 0.1 and 10 μM (r2 = 0.9963) and a limit of detection (LOD) and quantification (LOQ) of 70 and 200 nM, respectively. Its applicability was successfully demonstrated by the determination of DCF in spiked water samples (river and tap water).


2021 ◽  
Vol 26 (1) ◽  
pp. 8-21
Author(s):  
Emad A. Khudaish ◽  
Arwa Al-Maskari

A solid-state sensor was fabricated by a spontaneous electrochemical deposition of polytyramine (Ptyr) film onto a glassy carbon electrode (GCE) which was further peripherally supported by gold nanoparticles (AuNPs). The surface materials of the developed sensor (AuNPs.Ptyr-GCE) were characterized by X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The rate constant of charge transfers (kct) of the as-prepared sensor (8.77 × 10-4 cm/s) was evaluated by fitting the charge transfer resistance (Rct) data in the presence of ferric-ferrous hexacyanide redox couple solution, [Fe(CN)6]3-/4-. The voltammetric behavior of norepinephrine (NOR) was confirmed to follow an irreversible reaction mechanism at which the estimated diffusion coefficient value was 7.39 × 10-5 cm2/s. The sensor showed a large enhancement on NOR oxidation and comparatively lowered its detection limit (DL3s) to 0.130 mM (22 ppb). It was also applied for selective determination of NOR in the presence of high concentrations of ascorbic acid (AA) and uric acid (UA). The interference study highlighted the great stability of the proposed sensor by generating a similar sensitivity as in the pure NOR solution. The analytical performance of the proposed system was validated successfully for pharmaceutical and biological samples with tolerable recovery percentages.


1996 ◽  
Vol 61 (3) ◽  
pp. 333-341
Author(s):  
Jiří Barek ◽  
Roman Hrnčíř ◽  
Josino C. Moreira ◽  
Jiří Zima

The polarographic behaviour was studied for 6-β-D-glucopyranosyloxy-7-hydroxycoumarin, a natural compound serving as an optical whitening agent. The substance can be quantitated by tast polarography, differential pulse polarography using a conventional dropping mercury electrode, and differential pulse polarography using a static mercury drop electrode over the regions of 20-1 000, 2-1 000, and 0.2-1 000 μmol l-1, respectively. The methods developed for the quantitation of the compound were applied to its direct determination in a raw product.


Sign in / Sign up

Export Citation Format

Share Document