Vegetation Cover Assessment Based on Soil Properties in Arid and Semi-arid Areas using Landsat Images: A Case Study in Neyshaboor Area

2011 ◽  
Vol 11 (1) ◽  
pp. 9-18 ◽  
Author(s):  
M. Ghaemi ◽  
S.H. Sanaeineja ◽  
A. Astaraei
2018 ◽  
Vol 10 (8) ◽  
pp. 1248 ◽  
Author(s):  
Hua Sun ◽  
Qing Wang ◽  
Guangxing Wang ◽  
Hui Lin ◽  
Peng Luo ◽  
...  

Land degradation and desertification in arid and semi-arid areas is of great concern. Accurately mapping percentage vegetation cover (PVC) of the areas is critical but challenging because the areas are often remote, sparsely vegetated, and rarely populated, and it is difficult to collect field observations of PVC. Traditional methods such as regression modeling cannot provide accurate predictions of PVC in the areas. Nonparametric constant k-nearest neighbors (Cons_kNN) has been widely used in estimation of forest parameters and is a good alternative because of its flexibility. However, using a globally constant k value in Cons_kNN limits its ability of increasing prediction accuracy because the spatial variability of PVC in the areas leads to spatially variable k values. In this study, a novel method that spatially optimizes determining the spatially variable k values of Cons_kNN, denoted with Opt_kNN, was proposed to map the PVC in both Duolun and Kangbao County located in Inner Mongolia and Hebei Province of China, respectively, using Landsat 8 images and sample plot data. The Opt_kNN was compared with Cons_kNN, a linear stepwise regression (LSR), a geographically weighted regression (GWR), and random forests (RF) to improve the mapping for the study areas. The results showed that (1) most of the red and near infrared band relevant vegetation indices derived from the Landsat 8 images had significant contributions to improving the mapping accuracy; (2) compared with LSR, GWR, RF and Cons-kNN, Opt_kNN resulted in consistently higher prediction accuracies of PVC and decreased relative root mean square errors by 5%, 11%, 5%, and 3%, respectively, for Duolun, and 12%, 1%, 23%, and 9%, respectively, for Kangbao. The Opt_kNN also led to spatially variable and locally optimal k values, which made it possible to automatically and locally optimize k values; and (3) the RF that has become very popular in recent years did not perform the predictions better than the Opt_kNN for the both areas. Thus, the proposed method is very promising to improve mapping the PVC in the arid and semi-arid areas.


2020 ◽  
Vol 12 (22) ◽  
pp. 3826 ◽  
Author(s):  
Yuhong He ◽  
Jian Yang ◽  
Xulin Guo

The ability to quantify green vegetation across space and over time is useful for studying grassland health and function and improving our understanding of the impact of land use and climate change on grasslands. Directly measuring the fraction of green vegetation cover is labor-intensive and thus only practical on relatively smaller experimental sites. Remote sensing vegetation indices, as a commonly-used method for large-area vegetation mapping, were found to produce inconsistent accuracies when mapping green vegetation in semi-arid grasslands, largely due to mixed pixels including both photosynthetic and non-photosynthetic material. The spectral mixture approach has the potential to map the fraction of green vegetation cover in a heterogeneous landscape, thanks to its ability to decompose a spectral signal from a mixed pixel into a set of fractional abundances. In this study, a time series of fractional green vegetation cover (FGVC) from 1999 to 2014 is estimated using the spectral mixture approach for a semi-arid mixed grassland, which represents a typical threatened, species-rich habitat in Central Canada. The shape of pixel clouds in each of the Landsat images is used to identify three major image endmembers (green vegetation, bare soil/litter, and water/shadow) for automated image spectral unmixing. The FGVC derived through the spectral mixture approach correlates highly with field observations (R2 = 0.86). Change in the FGVC over the study period was also mapped, and green vegetation in badlands and uplands is found to experience a slight increase, while vegetation in riparian zone shows a decrease. Only a small portion of the study area is undergoing significant changes, which is likely attributable to climate variability, bison reintroduction, and wildfire. The results of this study suggest that the automated spectral unmixing approach is promising, and the time series of medium-resolution images is capable of identifying changes in green vegetation cover in semi-arid grasslands. Further research should investigate driving forces for areas undergoing significant changes.


2019 ◽  
Vol 12 (4) ◽  
pp. 175-187
Author(s):  
Thanh Tien Nguyen

The objective of the study is to assess changes of fractional vegetation cover (FVC) in Hanoi megacity in period of 33 years from 1986 to 2016 based on a two endmember spectral mixture analysis (SMA) model using multi-spectral and multi-temporal Landsat-5 TM and -8 OLI images. Landsat TM/OLI images were first radiometrically corrected. FVC was then estimated by means of a combination of Normalized Difference Vegetation Index (NDVI) and classification method. The estimated FVC results were validated using the field survey data. The assessment of FVC changes was finally carried out using spatial analysis in GIS. A case study from Hanoi city shows that: (i) the proposed approach performed well in estimating the FVC retrieved from the Landsat-8 OLI data and had good consistency with in situ measurements with the statistically achieved root mean square error (RMSE) of 0.02 (R 2 =0.935); (ii) total FVC area of 321.6 km 2 (accounting for 9.61% of the total area) was slightly reduced in the center of the city, whereas, FVC increased markedly with an area of 1163.6 km 2 (accounting for 34.78% of the total area) in suburban and rural areas. The results from this study demonstrate the combination of NDVI and classification method using Landsat images are promising for assessing FVC change in megacities.


2019 ◽  
Vol 11 (24) ◽  
pp. 3038
Author(s):  
Yunlei Cui ◽  
Hua Sun ◽  
Guangxing Wang ◽  
Chengjie Li ◽  
Xiaoyu Xu

China has been facing serious land degradation and desertification in its north and northwest arid and semi-arid areas. Monitoring the dynamics of percentage vegetation cover (PVC) using remote sensing imagery in these areas has become critical. However, because these areas are large, remote, and sparsely populated, and also because of the existence of mixed pixels, there have been no accurate and cost-effective methods available for this purpose. Spectral unmixing methods are a good alternative as they do not need field data and are low cost. However, traditional linear spectral unmixing (LSU) methods lack the ability to capture the characteristics of spectral reflectance and scattering from endmembers and their interactions within mixed pixels. Moreover, existing nonlinear spectral unmixing methods, such as random forest (RF) and radial basis function neural network (RBFNN), are often costly because they require field measurements of PVC from a large number of training samples. In this study, a cost-effective approach to mapping PVC in arid and semi-arid areas was proposed. A method for selection and purification of endmembers mainly based on Landsat imagery was first presented. A probability-based spectral unmixing analysis (PBSUA) and a probability-based optimized k nearest-neighbors (PBOkNN) approach were then developed to improve the mapping of PVC in Duolun County in Inner Mongolia, China, using Landsat 8 images and field data from 920 sample plots. The proposed PBSUA and PBOkNN methods were further validated in terms of accuracy and cost-effectiveness by comparison with two LSU methods, with and without purification of endmembers, and two nonlinear approaches, RF and RBFNN. The cost-effectiveness was defined as the reciprocal of cost timing relative root mean square error (RRMSE). The results showed that (1) Probability-based spectral unmixing analysis (PBSUA) was most cost-effective and increased the cost-effectiveness by 29.3% 29.3%, 33.5%, 50.8%, and 53.0% compared with two LSU methods, PBOkNN, RF, and RBFNN, respectively; (2) PBSUA, RF, and RBFNN gave RRMSE values of 22.9%, 21.8%, and 22.8%, respectively, which were not significantly different from each other at the significance level of 0.05. Compatibly, PBOkNN and LSU methods with and without purification of endmembers resulted in significantly greater RRMSE values of 27.5%, 32.4%, and 43.3%, respectively; (3) the average estimates of the sample plots and predicted maps from PBSUA, PBOkNN, RF, and RBFNN fell in the confidence interval of the test plot data, but those from two LSU methods did not, although the LSU with purification of endmembers improved the PVC estimation accuracy by 25.2% compared with the LSU without purification of endmembers. Thus, this study indicated that the proposed PBSUA had great potential for cost-effectively mapping PVC in arid and semi-arid areas.


2013 ◽  
Vol 33 (6) ◽  
pp. 1822-1831
Author(s):  
彭羽 PENG Yu ◽  
高英 GAO Ying ◽  
冯金朝 FENG Jinzhao ◽  
王德智 WANG Dezhi ◽  
姚森 YAO Sen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document