Effect of Annealing on Electrical Properties of Indium Tin Oxide (ITO) Thin Films

2002 ◽  
Vol 2 (5) ◽  
pp. 570-573 ◽  
Author(s):  
M. Tariq Bhatti . ◽  
Anwar Manzoor Rana . ◽  
Abdul Fahem Khan . ◽  
M. Iqbal Ansari .
2015 ◽  
Vol 16 (2) ◽  
pp. 286
Author(s):  
Hadaate Ullah ◽  
Shahin Mahmud ◽  
Fahmida Sharmin Jui

<p>Indium-tin oxide (ITO) which is optically transparent is referred as a “universal” electrode for various optoelectronic devices such as organic light emitting diodes (OLEDs). It is scientifically proved that the performance of OLEDs raises up significantly by exposing the ITO surface to oxygen plasma. This study employs conducting atomic force microscopy (C-AFM) for unique nanometer-scale mapping of the local current density of a vapor-deposited ITO film. Indium Tin Oxide (ITO) thin films have been prepared by using the reactive evaporation method on glass substrates in an oxygen atmosphere. It is found that the deposition rate plays a vital role in controlling the electrical properties of the ITO thin films. The resistivity and the electrical conductivity were also investigated. The electrical resistivity of 3.10 x10 <sup>–6</sup> Ωm has been obtained with a deposition rate of 2 nm/min.</p>


Optik ◽  
2018 ◽  
Vol 156 ◽  
pp. 728-737 ◽  
Author(s):  
Leandro Voisin ◽  
Makoto Ohtsuka ◽  
Svitlana Petrovska ◽  
Ruslan Sergiienko ◽  
Takashi Nakamura

2011 ◽  
Vol 343-344 ◽  
pp. 116-123
Author(s):  
Yu Ming Peng ◽  
Yan Kuin Su ◽  
Cheng Jye Chu ◽  
Ru Yuan Yang ◽  
Ruei Ming Huang

In this paper, the indium tin oxide (ITO) thin films were prepared by a sol-gel spin coating method and then annealed under different temperatures (400, 500 and 550°C) in a mixture atmosphere of 3.75% H2 with 96.25% N2 gases. The microstructure, optical and electrical properties of the prepared films were investigated and discussed. The XRD patterns of the ITO thin films indicated the main peak of the (222) plane and showed a high degree of crystallinity with an increase of the annealing temperature. In addition, due to the pores existing in the prepared films, the optical and electrical properties of the prepared films are degraded through the sol-gel process. Thus, the best transmittance of 70.0 %in the visible wavelength region and the lowest resistivity of about 1.1×10-2 Ω-cm were obtained when the prepared film was annealed at 550°C.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1167
Author(s):  
Sung-Hun Kim ◽  
Won-Ju Cho

We proposed the enhancement of the electrical properties of solution-processed indium–tin–oxide (ITO) thin films through microwave irradiation (MWI) and argon (Ar) gas plasma treatment. A cost- and time-effective heat treatment through MWI was applied as a post-deposition annealing (PDA) process to spin-coated ITO thin films. Subsequently, the sheet resistance of MWI ITO thin films was evaluated before and after plasma treatment. The change in the sheet resistance demonstrated that MWI PDA and Ar plasma treatment significantly improved the electrical properties of the ITO thin films. Furthermore, X-ray photoelectron spectroscopy and X-ray diffraction analyses showed that the electrical properties of the ITO thin films were enhanced by the increase in oxygen vacancies due to the ion bombardment effect of high-energy plasma ions during Ar plasma treatment. Changes in the band gap structure of the ITO thin film due to the ion bombardment effect were also analyzed. The combination of MWI PDA and Ar plasma treatment presents new possibilities for improving the high-conductivity sol–gel ITO electrode.


2012 ◽  
Vol 545 ◽  
pp. 393-398 ◽  
Author(s):  
Mohammed Khalil Mohammed Ali ◽  
K. Ibrahim ◽  
M.Z. Pakhuruddin ◽  
M.G. Faraj

This work describe the optical and electrical properties of indium tin oxide (ITO) thin films prepared by thermal evaporation method on flexible plastic substrate (polyethylene terephthalate (PET)). The optical transmission and absorption of ITO films in the visible and UV rang have been studied. The resistivity, sheet resistant, carrier concentration and mobility have been evaluated by Hall Effect measurement. The surface morphology and roughness were investigated by atomic force microscopy (AFM). The results indicate that the optical transmission greater than 85% over the visible rang and it was found to be strongly dependent on the thickness of ITO films. The Resistivity and sheet resistant with low values (10-4Ω-cm, 9.22 Ω/ respectively) were obtained and ties values were increased with ITO thin films thickness increasing .AFM investigation showed that the roughness surface of (8 – 30) RMS have been obtained over different thickness of ITO films. The obtained results of the deposited films by this method were analyzed. Details of sample preparation, experimental methods and results are given and discussed.


Author(s):  
Emerson Roberto Santos ◽  
Thiago de Carvalho Fullenbach ◽  
Marina Sparvoli Medeiros ◽  
Luis da Silva Zambom ◽  
Roberto Koji Onmori ◽  
...  

Transparent conductive oxides (TCOs) known as indium tin oxide (ITO) and fluorine tin oxide (FTO) deposited on glass were compared by different techniques and also as anodes in organic light-emitting diode (OLED) devices with same structure. ITO produced at laboratory was compared with the commercial one manufactured by different companies: Diamond Coatings, Displaytech and Sigma-Aldrich, and FTO produced at laboratory was compared with the commercial one manufactured by Flexitec Company. FTO thin films produced at laboratory presented the lowest performance measured by Hall effect technique and also by I-V curve of OLED device with low electrical current and high threshold voltage. ITO thin films produced at laboratory presented elevated sheet resistance in comparison with commercial ITOs (approximately one order of magnitude greater), that can be related by a high number of defects as discontinuity of the chemical lattice or low crystalline structure. In the assembly of OLED devices with ITO and FTO produced at laboratory, neither presented luminances. ITO manufactured by Sigma-Aldrich company presented better electrical and optical characteristics, as low electrical resistivity, good wettability, favorable transmittance, perfect physicalchemical stability and lowest threshold voltage (from 3 to 4.5 V) for OLED devices.


2010 ◽  
Vol 57 (6(1)) ◽  
pp. 1794-1798 ◽  
Author(s):  
Jong-Woong Kim ◽  
Jangwoo Choi ◽  
Sung-Jei Hong ◽  
Jeong-In Han ◽  
Young-Sung Kim

Sign in / Sign up

Export Citation Format

Share Document