scholarly journals Interactions of Target Proteins with the virB4 Gene from Bovine Embryo Trophoblast Cells Infected with Brucella abortus Screened Through a Yeast Two-Hybrid Assay

2012 ◽  
Vol 11 (11) ◽  
pp. 1793-1799
Author(s):  
Chen Chuangfu ◽  
Zhang Hui ◽  
Wang Pengyan ◽  
Wang Yuanzhi ◽  
Guo Qian ◽  
...  

2020 ◽  
Author(s):  
Yaqi Hao ◽  
Jiashu Chu ◽  
Lujing Shi ◽  
Cong Ma ◽  
Liangliang Hui ◽  
...  

Abstract BackgroundAtCYP38, a thylakoid lumen localized immunophilin, is essential for photosystem II (PSII) assembly and maintenance, but how AtCYP38 functions in chloroplast remains unknown. Based on previous functional studies and its crystal structure, we hypothesize that AtCYP38 should function via binding its targets or cofactors in the thylakoid lumen to influence PSII performance. Therefore, identifying its target proteins and cofactors would be a key step to understand the working mechanism of AtCYP38.ResultsTo identify potential interacting proteins of AtCYP38, we first adopted two web-based tools, ATTED-II and STRING, and found 15 proteins functionally related to AtCYP38. We then screened a yeast two-hybrid library including an Arabidopsis genome wide cDNA with the N-terminal domain, the C-terminal domain, and the full-length mature protein of AtCYP38. 25 positive targets were identified, but a very limited number of target proteins were localized in the thylakoid lumen. In order to specifically search interacting proteins of AtCYP38 in the thylakoid lumen, we created a yeast two-hybrid mini library including the thylakoid lumenal proteins and lumen fractions of thylakoid membrane proteins. After screening the mini library with 3 different forms of AtCYP38, we obtained 6 thylakoid membrane proteins and 9 thylakoid lumenal proteins as interacting proteins of AtCYP38. We further confirmed the localization of several identified proteins and their interaction between AtCYP38.ConclusionsAfter analysis with two web-based tools and yeast two-hybrid screenings against two different libraries, we identified a couple of potential interacting proteins, which could be functionally related to AtCYP38. We believe that the results will lay a foundation for unveiling the working mechanism of AtCYP38 in photosynthesis.



2019 ◽  
Author(s):  
Alexandra J.E. Pelgrom ◽  
Claudia-Nicole Meisrimler ◽  
Joyce Elberse ◽  
Thijs Koorman ◽  
Mike Boxem ◽  
...  

AbstractPlant pathogenic bacteria, fungi and oomycetes secrete effector proteins to manipulate host cell processes to establish a successful infection. Over the last decade the genomes and transcriptomes of many agriculturally important plant pathogens have been sequenced and vast candidate effector repertoires were identified using bioinformatic analyses. Elucidating the contribution of individual effectors to pathogenicity is the next major hurdle. To advance our understanding of the molecular mechanisms underlying lettuce susceptibility to the downy mildew Bremia lactucae, we mapped a network of physical interactions between B. lactucae effectors and lettuce target proteins. Using a lettuce cDNA library-based yeast-two-hybrid system, 61 protein-protein interactions were identified, involving 21 B. lactucae effectors and 46 unique lettuce proteins. The top ten targets based on the number of independent colonies identified in the Y2H and two targets that belong to gene families involved in plant immunity, were further characterized. We determined the subcellular localization of the fluorescently tagged target proteins and their interacting effectors. Importantly, relocalization of effectors or targets to the nucleus was observed for four effector-target pairs upon their co-expression, supporting their interaction in planta.



2010 ◽  
Vol 192 (12) ◽  
pp. 3235-3239 ◽  
Author(s):  
Johann Mignolet ◽  
Charles Van der Henst ◽  
Cécile Nicolas ◽  
Michaël Deghelt ◽  
Delphine Dotreppe ◽  
...  

ABSTRACT The bacterial pathogen Brucella abortus was recently demonstrated to recruit the essential cytoplasmic histidine kinase PdhS to its old pole. Here, we report identification of the fumarase FumC as a specific partner for the N-terminal “sensing” domain of PdhS, using an ORFeome-based yeast two-hybrid screen. We observed that FumC and PdhS colocalize at the old pole of B. abortus, while the other fumarase FumA is not polarly localized. FumC is not required for PdhS localization, and polar FumC localization is not FumA dependent. FumC homologs are not polarly localized in Sinorhizobium meliloti and Caulobacter crescentus, suggesting that polar recruitment of FumC by PdhS is evolutionarily recent.



2013 ◽  
Vol 38 (9) ◽  
pp. 1583-1591
Author(s):  
Li-Yan XUE ◽  
Bing LUO ◽  
Li-Quan ZHU ◽  
Yong-Jun YANG ◽  
He-Cui ZHANG ◽  
...  




2019 ◽  
Vol 94 (1) ◽  
Author(s):  
M. V. Borca ◽  
E. A. Vuono ◽  
E. Ramirez-Medina ◽  
P. Azzinaro ◽  
K. A. Berggren ◽  
...  

ABSTRACT The E2 protein in classical swine fever (CSF) virus (CSFV) is the major virus structural glycoprotein and is an essential component of the viral particle. E2 has been shown to be involved in several functions, including virus adsorption, induction of protective immunity, and virulence in swine. Using the yeast two-hybrid system, we previously identified a swine host protein, dynactin subunit 6 (DCTN6) (a component of the cell dynactin complex), as a specific binding partner for E2. We confirmed the interaction between DCTN6 and E2 proteins in CSFV-infected swine cells by using two additional independent methodologies, i.e., coimmunoprecipitation and proximity ligation assays. E2 residues critical for mediating the protein-protein interaction with DCTN6 were mapped by a reverse yeast two-hybrid approach using a randomly mutated E2 library. A recombinant CSFV mutant, E2ΔDCTN6v, harboring specific substitutions in those critical residues was developed to assess the importance of the E2-DCTN6 protein-protein interaction for virus replication and virulence in swine. CSFV E2ΔDCTN6v showed reduced replication, compared with the parental virus, in an established swine cell line (SK6) and in primary swine macrophage cultures. Remarkably, animals infected with CSFV E2ΔDCTN6v remained clinically normal during the 21-day observation period, which suggests that the ability of CSFV E2 to bind host DCTN6 protein efficiently during infection may play a role in viral virulence. IMPORTANCE Structural glycoprotein E2 is an important component of CSFV due to its involvement in many virus activities, particularly virus-host interactions. Here, we present the description and characterization of the protein-protein interaction between E2 and the swine host protein DCTN6 during virus infection. The E2 amino acid residues mediating the interaction with DCTN6 were also identified. A recombinant CSFV harboring mutations disrupting the E2-DCTN6 interaction was created. The effect of disrupting the E2-DCTN6 protein-protein interaction was studied using reverse genetics. It was shown that the same amino acid substitutions that abrogated the E2-DCTN6 interaction in vitro constituted a critical factor in viral virulence in the natural host, domestic swine. This highlights the potential importance of the E2-DCTN6 protein-protein interaction in CSFV virulence and provides possible mechanisms of virus attenuation for the development of improved CSF vaccines.





2002 ◽  
Vol 4 (6) ◽  
pp. 1040-1046 ◽  
Author(s):  
Yasunori Kawagoshi ◽  
Yukiko Tsukagoshi ◽  
Isao Fukunaga


Author(s):  
Orsolya Frittmann ◽  
Vamsi K Gali ◽  
Miklos Halmai ◽  
Robert Toth ◽  
Zsuzsanna Gyorfy ◽  
...  

Abstract DNA damages that hinder the movement of the replication complex can ultimately lead to cell death. To avoid that, cells possess several DNA damage bypass mechanisms. The Rad18 ubiquitin ligase controls error-free and mutagenic pathways that help the replication complex to bypass DNA lesions by monoubiquitylating PCNA at stalled replication forks. In Saccharomyces cerevisiae, two of the Rad18 governed pathways are activated by monoubiquitylated PCNA and they involve translesion synthesis polymerases, whereas a third pathway needs subsequent polyubiquitylation of the same PCNA residue by another ubiquitin ligase the Rad5 protein, and it employs template switching. The goal of this study was to dissect the regulatory role of the multidomain Rad18 in DNA damage bypass using a structure-function based approach. Investigating deletion and point mutant RAD18 variants in yeast genetic and yeast two-hybrid assays we show that the Zn-finger of Rad18 mediates its interaction with Rad5, and the N-terminal adjacent region is also necessary for Rad5 binding. Moreover, results of the yeast two-hybrid and in vivo ubiquitylation experiments raise the possibility that direct interaction between Rad18 and Rad5 might not be necessary for the function of the Rad5 dependent pathway. The presented data also reveal that yeast Rad18 uses different domains to mediate its association with itself and with Rad5. Our results contribute to better understanding of the complex machinery of DNA damage bypass pathways.



Sign in / Sign up

Export Citation Format

Share Document