Impact of Missing Elements on Nutrient Use Efficiency of Sweet Corn (Zea mays L. Saccharum) on Five Tropical Soils

2006 ◽  
Vol 9 (5) ◽  
pp. 961-967 ◽  
Author(s):  
Ezekiel Akinkunmi Akinrinde ◽  
Emmanuel Teboh .
Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2717
Author(s):  
Fengliang Zhao ◽  
Xiaoping Xin ◽  
Yune Cao ◽  
Dan Su ◽  
Puhui Ji ◽  
...  

The use of carbon nanoparticles (CNPs) as a fertilizer synergist to enhance crop growth has attracted increasing interest. However, current understanding about plant growth and soil response to CNPs is limited. In the present study, we investigated the effects of CNPs at different application rates on soil properties, the plant growth and nutrient use efficiency (NUE) of corn (Zea mays L.) in two agricultural soils (Spodosol and Alfisol). The results showed that CNPs affected corn growth in a dose-dependent manner, augmenting and retarding growth at low and at high concentrations, respectively. The amendment at the optimal rate of 200 mg CNPs kg−1 significantly enhanced corn growth as indicated by improved plant height, biomass yield, nutrient uptake and nutrient use efficiency, which could be explained by the higher availability of phosphorus and nitrogen in the amended soils. The application of CNPs largely stimulated soil urease activity irrespectively of soil types. However, the responses of dehydrogenase and phosphatase to CNPs were dose dependent; their activity significantly increased with the increasing application rates of CNPs up to 200 mg kg−1 but declined at higher rates (>400 mg kg−1). These findings have important implications in the field application of CNPs for enhancing nutrient use efficiency and crop production in tropical/subtropical regions.


2021 ◽  
Vol 13 (9) ◽  
pp. 4878
Author(s):  
Yit Leng Lee ◽  
Osumanu Haruna Ahmed ◽  
Samsuri Abdul Wahid ◽  
Zakry Fitri AB Aziz

Densification of ashy biochar into tablet can enhance the handling and conveyance efficiencies of biochar. It was hypothesized that fertilizer-embedded biochar tablets can slowly release embedded nutrients in synchrony with optimum nutrient uptake by crops. The objectives of this research were to determine the effects of biochar tablets with and without embedded fertilizer on soil chemical properties and nutrient use efficiency of Zea mays (sweet corn). The biochar tablet (BT) was produced by blending a biochar mixture with starch followed by densification using a single punch tablet press whereas the fertilizer embedded biochar tablet (BF) was prepared using the same procedure except that NPK fertilizer was added during blending. A pot experiment with five fertilization treatments including control was carried out in an open field located in Perlis, Malaysia. Co-application of biochar and fertilizer increased soil total carbon, nitrogen, but it reduced soil electrical conductivity (EC). Additionally, the BF significantly increased leaf chlorophyll content, dry root weight, and total plant nutrient use efficiency of sweet corn. The findings suggest that BF can serve as a slow release fertilizer to improve crop nutrient use efficiency. Therefore, embedding fertilizer in biochar tablets is recommended for sweet corn production following a long term field study to confirm the findings of this pot study.


2006 ◽  
Vol 6 ◽  
pp. 231-245 ◽  
Author(s):  
Debtanu Maiti ◽  
D.K. Das ◽  
H. Pathak

Crop modeling can provide us with information about fertilizer dose to achieve the target yield, crop conditions, etc. Due to conventional and imbalanced fertilizer application, nutrient use efficiency in wheat is low. Estimation of fertilizer requirements based on quantitative approaches can assist in improving yields and nutrient use efficiency. Field experiments were conducted at 20 sites in eastern India (Nadia district of West Bengal) to assess the soil supply, requirement, and internal efficiency of N, P, K, and Zn in wheat. The data were used to calibrate the QUEFTS (Quantitative Evaluation of the Fertility of Tropical Soils) model for site-specific, balanced fertilizer recommendations. The parameters of maximum accumulation (a) and maximum dilution (d) in wheat were calculated for N (35, 100), P (129, 738), K (17, 56), and Zn (21502, 140244). Grain yield of wheat showed statistically significant correlation with N (R2= 0.937**), P (R2= 0.901**), and K uptake (R2= 0.801**). The NPK ratio to produce 1 tonne grain yield of wheat was calculated to be 4.9:1.0:8.9. The relationships between chemical properties and nutrient-supplying capacity of soils were also established. The model was validated using the data from four other experiments. Observed yields with different amounts of N, P, K, and Zn were in good agreement with the predicted values, suggesting that the validated QUEFTS model can be used for site-specific nutrient management of wheat.


2019 ◽  
Vol 13 (2) ◽  
pp. 11-15
Author(s):  
Tyas Nyonita Punjungsari ◽  
Agung Setya Wibowo ◽  
Intan Fuji Arriani ◽  
Palupi Puspitorini

PBRM (Plant Beneficial Rhizospheric Microorganism) is a microbe that is able to form colonies in plant roots (rhizosphere) that have the ability to fix nitrogen (N), and dissolve potassium (K), phosphorus (P), and zinc (Zn). Increasing NUE can increase plant growth through various mechanisms. Population and dynamics of rhizosphere microorganisms are different from other soil microorganisms, this is caused by an increase. The purpose of this study was to determine the type of rhizosphere bacteria that can be as PBRM. The method used The research was conducted at the Microbiology Laboratory of the Faculty of Agriculture, Brawijaya University, Malang. The characterization process was carried out in UB's microbiology laboratory. 50 grams of soil for planting corn were put into an erlenmeyer containing 500 ml NB (for bacteria) and 500 ml liquid PDA (for mold) and then incubated with the secretary for about 24 hours and then diluted in series to a dilution rate of 10-3,10-4,10 -5. Then from the dilution factor of 10-3,10-4,10-5 0.1 ml is taken and inoculated in solid media by the pour plate method. The results showed that the antagonistic rhizosphere bacteria were P. fluorescens, B. subtillis, and Rhizobium sp.


Sign in / Sign up

Export Citation Format

Share Document