scholarly journals On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative

2021 ◽  
Vol 6 (10) ◽  
pp. 10920-10946
Author(s):  
Saima Rashid ◽  
◽  
Fahd Jarad ◽  
Khadijah M. Abualnaja ◽  
◽  
...  

<abstract><p>This investigation communicates with an initial value problem (IVP) of Hilfer-generalized proportional fractional ($ \mathcal{GPF} $) differential equations in the fuzzy framework is deliberated. By means of the Hilfer-$ \mathcal{GPF} $ operator, we employ the methodology of successive approximation under the generalized Lipschitz condition. Based on the proposed derivative, the fractional Volterra-Fredholm integrodifferential equations $ (\mathcal{FVFIE}s) $ via generalized fuzzy Hilfer-$ \mathcal{GPF} $ Hukuhara differentiability ($ \mathcal{HD} $) having fuzzy initial conditions are investigated. Moreover, the existence of the solution is proposed by employing the fixed-point formulation. The uniqueness of the solution is verified. Furthermore, we derived the equivalent form of fuzzy $ \mathcal{FVFIE}s $ which is supposed to demonstrate the convergence of this group of equations. Two appropriate examples are presented for illustrative purposes.</p></abstract>

2021 ◽  
Vol 8 (1) ◽  
pp. 87-100
Author(s):  
Abdelkrim Salim ◽  
Mouffak Benchohra ◽  
Jamal Eddine Lazreg ◽  
Juan J. Nieto ◽  
Yong Zhou

Abstract In this paper, we prove some existence results of solutions for a class of nonlocal initial value problem for nonlinear fractional hybrid implicit differential equations under generalized Hilfer fractional derivative. The result is based on a fixed point theorem on Banach algebras. Further, examples are provided to illustrate our results.


Author(s):  
Arran Fernandez ◽  
Sümeyra Uçar ◽  
Necati Özdemir

AbstractNonlinear fractional differential equations have been intensely studied using fixed point theorems on various different function spaces. Here we combine fixed point theory with complex analysis, considering spaces of analytic functions and the behaviour of complex powers. It is necessary to study carefully the initial value properties of Riemann–Liouville fractional derivatives in order to set up an appropriate initial value problem, since some such problems considered in the literature are not well-posed due to their initial conditions. The problem that emerges turns out to be dimensionally consistent in an unexpected way, and therefore suitable for applications too.


2001 ◽  
Vol 27 (6) ◽  
pp. 347-356 ◽  
Author(s):  
Will Watkins

This paper is concerned with a class of functional differential equations whose argument transforms are involutions. In contrast to the earlier works in this area, which have used only involutions with a fixed point, we also admit involutions without a fixed point. In the first case, an initial value problem for a differential equation with involution is reduced to an initial value problem for a higher order ordinary differential equation. In our case, either two initial conditions or two boundary conditions are necessary for a solution; the equation is then reduced to a boundary value problem for a higher order ODE.


2021 ◽  
Vol 10 (1) ◽  
pp. 1301-1315
Author(s):  
Eduardo Cuesta ◽  
Mokhtar Kirane ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

Abstract We consider a fractional derivative with order varying in time. Then, we derive for it a Leibniz' inequality and an integration by parts formula. We also study an initial value problem with our time variable order fractional derivative and present a regularity result for it, and a study on the asymptotic behavior.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769006 ◽  
Author(s):  
Devendra Kumar ◽  
Jagdev Singh ◽  
Maysaa Al Qurashi ◽  
Dumitru Baleanu

In this work, we aim to analyze the logistic equation with a new derivative of fractional order termed in Caputo–Fabrizio sense. The logistic equation describes the population growth of species. The existence of the solution is shown with the help of the fixed-point theory. A deep analysis of the existence and uniqueness of the solution is discussed. The numerical simulation is conducted with the help of the iterative technique. Some numerical simulations are also given graphically to observe the effects of the fractional order derivative on the growth of population.


1996 ◽  
Vol 06 (02) ◽  
pp. 269-277 ◽  
Author(s):  
Z. CHARKI

A fixed point argument is used to prove the existence and uniqueness of solutions for the unsteady deep Bénard convection equations in [Formula: see text] for [Formula: see text].


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu

We discuss the existence and uniqueness of solution to nonlinear fractional order ordinary differential equations(Dα-ρtDβ)x(t)=f(t,x(t),Dγx(t)),t∈(0,1)with boundary conditionsx(0)=x0,  x(1)=x1or satisfying the initial conditionsx(0)=0,  x′(0)=1, whereDαdenotes Caputo fractional derivative,ρis constant,1<α<2,and0<β+γ≤α. Schauder's fixed-point theorem was used to establish the existence of the solution. Banach contraction principle was used to show the uniqueness of the solution under certain conditions onf.


Sign in / Sign up

Export Citation Format

Share Document