scholarly journals Age, Dietary Fiber, Breath Methane, and Fecal Short Chain Fatty Acids Are Interrelated in Archaea-Positive Humans

2013 ◽  
Vol 143 (8) ◽  
pp. 1269-1275 ◽  
Author(s):  
Judlyn Fernandes ◽  
Angela Wang ◽  
Wen Su ◽  
Sari Rahat Rozenbloom ◽  
Amel Taibi ◽  
...  
Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 152
Author(s):  
Kanako Omori ◽  
Hiroki Miyakawa ◽  
Aya Watanabe ◽  
Yuki Nakayama ◽  
Yijin Lyu ◽  
...  

Constipation is a common condition that occurs in many people worldwide. While magnesium oxide (MgO) is often used as the first-line drug for chronic constipation in Japan, dietary fiber intake is also recommended. Dietary fiber is fermented by microbiota to produce short-chain fatty acids (SCFAs). SCFAs are involved in regulating systemic physiological functions and circadian rhythm. We examined the effect of combining MgO and the water-soluble dietary fiber, inulin, on cecal SCFA concentration and microbiota in mice. We also examined the MgO administration timing effect on cecal SCFAs. The cecal SCFA concentrations were measured by gas chromatography, and the microbiota was determined using next-generation sequencing. Inulin intake decreased cecal pH and increased cecal SCFA concentrations while combining MgO increased the cecal pH lowered by inulin and decreased the cecal SCFA concentrations elevated by inulin. When inulin and MgO were combined, significant changes in the microbiota composition were observed compared with inulin alone. The MgO effect on the cecal acetic acid concentration was less when administered at ZT12 than at ZT0. In conclusion, this study suggests that MgO affects cecal SCFA and microbiota during inulin feeding, and the effect on acetic acid concentration is time-dependent.


2019 ◽  
Vol 10 ◽  
Author(s):  
Gavin Lewis ◽  
Bowen Wang ◽  
Pedram Shafiei Jahani ◽  
Benjamin P. Hurrell ◽  
Homayon Banie ◽  
...  

2021 ◽  
Vol 99 (10) ◽  
Author(s):  
Xiaorong Yu ◽  
Chunsheng Fu ◽  
Zhenchuan Cui ◽  
Guangyong Chen ◽  
Yinglei Xu ◽  
...  

Abstract Constipation in gestating and lactating sows is common and the inclusion of dietary fiber may help to alleviate this problem. We investigated the effects of inulin (INU) and isomalto-oligosaccharide (IMO), two sources of soluble dietary fiber, on gastrointestinal motility-related hormones, short-chain fatty acids (SCFA), fecal microflora, and reproductive performance in pregnant sows. On day 64 of gestation, 30 sows were randomly divided into three groups and fed as follows: a basal diet, a basal diet with 0.5% INU, and a basal diet with 0.5% IMO. We found that INU and IMO significantly modulated the levels of gastrointestinal motility-related hormones, as evidenced by an increase in substance P (P < 0.05), and a decrease in the vasoactive intestinal peptide concentrations (P < 0.05), indicating the capacity of INU and IMO to alleviate constipation. Furthermore, IMO enhanced the concentrations of acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids in the feces (P < 0.05). High-throughput sequencing showed that IMO and INU increased the fecal microflora α- and β-diversity (P < 0.05). Methanobrevibacter was more abundant (P < 0.05), whereas the richness of Turicibacter was lower in the INU and IMO groups than in the control group (P < 0.05). In addition, IMO significantly increased litter size (P < 0.05). Overall, our findings indicate that INU and IMO can relieve constipation, optimize intestinal flora, and promote reproductive performance in pregnant sows.


2019 ◽  
Vol 20 (5) ◽  
pp. 1214 ◽  
Author(s):  
Huawei Zeng ◽  
Shahid Umar ◽  
Bret Rust ◽  
Darina Lazarova ◽  
Michael Bordonaro

Secondary bile acids (BAs) and short chain fatty acids (SCFAs), two major types of bacterial metabolites in the colon, cause opposing effects on colonic inflammation at chronically high physiological levels. Primary BAs play critical roles in cholesterol metabolism, lipid digestion, and host–microbe interaction. Although BAs are reabsorbed via enterohepatic circulation, primary BAs serve as substrates for bacterial biotransformation to secondary BAs in the colon. High-fat diets increase secondary BAs, such as deoxycholic acid (DCA) and lithocholic acid (LCA), which are risk factors for colonic inflammation and cancer. In contrast, increased dietary fiber intake is associated with anti-inflammatory and anticancer effects. These effects may be due to the increased production of the SCFAs acetate, propionate, and butyrate during dietary fiber fermentation in the colon. Elucidation of the molecular events by which secondary BAs and SCFAs regulate colonic cell proliferation and inflammation will lead to a better understanding of the anticancer potential of dietary fiber in the context of high-fat diet-related colon cancer. This article reviews the current knowledge concerning the effects of secondary BAs and SCFAs on the proliferation of colon epithelial cells, inflammation, cancer, and the associated microbiome.


2019 ◽  
Vol 10 (4) ◽  
pp. 576-589 ◽  
Author(s):  
Celeste Alexander ◽  
Kelly S Swanson ◽  
George C Fahey ◽  
Keith A Garleb

ABSTRACTIn recent years, it has become increasingly obvious that dietary fiber or nondigestible carbohydrate (NDC) consumption is critical for maintaining optimal health and managing symptoms of metabolic disease. In accordance with this, the US FDA released its first official definition of dietary fiber in 2016 for regulation of Nutrition and Supplement Facts labels. Included in this definition is the requirement of an isolated or synthetic NDC to produce an accepted physiologic health benefit, such as improved laxation or reduced fasting cholesterol concentrations, upon consumption. Even though NDC fermentation and production of short-chain fatty acids elicit many physiologic effects, including serving as a source of energy for colonocytes, curbing glycemic response and satiety, promoting weight loss, enhancing mineral absorption, reducing systemic inflammation, and improving intestinal health, the process of fermentation is not considered a physiologic endpoint. Instead, expensive and laborious clinical trials must be conducted and an accepted physiologic benefit observed. In this review, we discuss the physiologic importance of NDC fermentation through extensive examination of clinical evidence and propose that the degree of fermentability of an NDC, rather than the endpoints of a clinical trial, may be appropriate for classifying it as a dietary fiber.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 859 ◽  
Author(s):  
Mari C. W. Myhrstad ◽  
Hege Tunsjø ◽  
Colin Charnock ◽  
Vibeke H. Telle-Hansen

New knowledge about the gut microbiota and its interaction with the host’s metabolic regulation has emerged during the last few decades. Several factors may affect the composition of the gut microbiota, including dietary fiber. Dietary fiber is not hydrolyzed by human digestive enzymes, but it is acted upon by gut microbes, and metabolites like short-chain fatty acids are produced. The short-chain fatty acids may be absorbed into the circulation and affect metabolic regulation in the host or be a substrate for other microbes. Some studies have shown improved insulin sensitivity, weight regulation, and reduced inflammation with increases in gut-derived short-chain fatty acids, all of which may reduce the risk of developing metabolic diseases. To what extent a dietary intervention with fiber may affect the human gut microbiota and hence metabolic regulation, is however, currently not well described. The aim of the present review is to summarize recent research on human randomized, controlled intervention studies investigating the effect of dietary fiber on gut microbiota and metabolic regulation. Metabolic regulation is discussed with respect to markers relating to glycemic regulation and lipid metabolism. Taken together, the papers on which the current review is based, suggest that dietary fiber has the potential to change the gut microbiota and alter metabolic regulation. However, due to the heterogeneity of the studies, a firm conclusion describing the causal relationship between gut microbiota and metabolic regulation remains elusive.


Sign in / Sign up

Export Citation Format

Share Document