scholarly journals Motion analysis for the mobile bearing tka using the knee joint simulator with a parallel link 6-dof actuator

2004 ◽  
Vol 28 (2) ◽  
pp. 84-90 ◽  
Author(s):  
Hidehiko HIGAKI ◽  
Koji KUMAMOTO ◽  
Takeshi SHIMOTO ◽  
Takatosi UMENO ◽  
Yoshitaka NAKANISHI ◽  
...  
2003 ◽  
Vol 2003.5 (0) ◽  
pp. 99-100
Author(s):  
Takeshi SHIMOTO ◽  
Hidehiko HIGAKI ◽  
Takatoshi Umeno ◽  
Koji Kumamoto ◽  
Yasuyuki KUBO ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
M. S. H. Bhuiyan ◽  
I. A. Choudhury ◽  
M. Dahari ◽  
Y. Nukman ◽  
S. Z. Dawal

A gear-based knee joint is designed to improve the performance of mechanical-type above-knee prostheses. The gear set with the help of some bracing, and bracket arrangement, is used to enable the prosthesis to follow the residual limb movement. The motion analysis and finite-element analysis (FEA) of knee joint components are carried out to assess the feasibility of the design. The maximum stress of 29.74 MPa and maximum strain of 2.393e−004 are obtained in the gear, whereas the maximum displacement of 7.975 mm occurred in the stopper of the knee arrangement. The factor of safety of 3.5 obtained from the FE analysis indicated no possibility of design failure. The results obtained from the FE analysis are then compared with the real data obtained from the literature for a similar subject. The pattern of motion analysis results has shown a great resemblance with the gait cycle of a healthy biological limb.


2003 ◽  
Vol 15 (05) ◽  
pp. 186-192 ◽  
Author(s):  
WEN-LAN WU ◽  
JIA-HROUNG WU ◽  
HWAI-TING LIN ◽  
GWO-JAW WANG

The purposes of the present study were to (1) investigate the effects of the arm movement and initial knee joint angle employed in standing long jump by the ground reaction force analysis and three-dimensional motion analysis; and (2) investigate how the jump performance of the female gender related to the body configuration. Thirty-four healthy adult females performed standing long jump on a force platform with full effort. Body segment and joint angles were analyzed by three-dimensional motion analysis system. Using kinetic and kinematic data, the trajectories on mass center of body, knee joint angle, magnitude of peak takeoff force, and impulse generation in preparing phase were calculated. Average standing long jump performances with free arm motion were +1.5 times above performance with restricted arm motion in both knee initial angles. The performances with knee 90° initial flexion were +1.2 times above performance with knee 45° initial flexion in free and restricted arm motions. Judging by trajectories of the center mass of body (COM), free arm motion improves jump distance by anterior displacement of the COM in starting position. The takeoff velocity with 90° knee initial angle was as much as 11% higher than in with 45° knee initial angle. However, the takeoff angles on the COM trajectory showed no significant differences between each other. It was found that starting jump from 90° bend knee relatively extended the time that the force is applied by the leg muscles. To compare the body configurations and the jumping scores, there were no significant correlations between jump scores and anthropometry data. The greater muscle mass or longer leg did not correlated well with the superior jumping performance.


Author(s):  
Nicholas H. Yang ◽  
H. Nayeb-Hashemi ◽  
Paul K. Canavan

Osteoarthritis (OA) is a degenerative disease of articular cartilage that may lead to pain, limited mobility and joint deformation. It has been reported that abnormal stresses and irregular stress distribution may lead to the initiation and progression of OA. Body weight and the frontal plane tibiofemoral angle are two biomechanical factors which could lead to abnormal stresses and irregular stress distribution at the knee. The tibiofemoral angle is defined as the angle made by the intersection of the mechanical axis of the tibia with the mechanical axis of the femur in the frontal plane. In this study, reflective markers were placed on the subjects’ lower extremity bony landmarks and tracked using motion analysis. Motion analysis data and force platform data were collected together during single-leg stance, double-leg stance and walking gait from three healthy subjects with no history of osteoarthritis (OA), one with normal tibiofemoral angle (7.67°), one with varus (bow-legged) angle (0.20°) and one with valgus (knocked-knee) angle (10.34°). The resultant moment and forces in the knee were derived from the data of the motion analysis and force platform experiments using inverse dynamics. The results showed that Subject 1 (0.20° valgus) had a varus moment of 0.38 N-m/kg, during single-leg stance, a varus moment of 0.036 N-m/kg during static double-leg stance and a maximum varus moment of 0.49 N-m/kg during the stance phase of the gait cycle. Subject 2 (7.67° valgus tibiofemoral angle) had a varus moment of 0.31 N-m/kg, during single-leg stance, a valgus moment of 0.046 N-m/kg during static double-leg stance and a maximum varus moment of 0.37 N-m/kg during the stance phase of the gait cycle. Subject 3 (10.34° valgus tibiofemoral angle) had a varus moment of 0.30 N-m/kg, during single-leg stance, a valgus moment of 0.040 N-m/kg during static double-leg stance and a maximum varus moment of 0.34 N-m/kg during the stance phase of the gait cycle. In general, the results show that the varus moment at the knee joint increased with varus knee alignment in static single-leg stance and gait. The results of the motion analysis were used to obtain the knee joint contact stress by finite element analysis (FEA). Three-dimensional (3-D) knee models were constructed with sagittal view MRI of the knee. The knee model included the bony geometry of the knee, the femoral and tibial articular cartilage, the lateral and medial menisci and the cruciate and the collateral ligaments. In initial FEA simulations, bones were modeled as rigid, articular cartilage was modeled as isotropic elastic, menisci were modeled as transversely isotopic elastic, and the ligaments were modeled as 1-D nonlinear springs. The material properties of the different knee components were taken from previously published literature of validated FEA models. The results showed that applying the axial load and varus moment determined from the motion analysis to the FEA model Subject 1 had a Von Mises stress of 1.71 MPa at the tibial cartilage while Subjects 2 and 3 both had Von Mises stresses of approximately 1.191 MPa. The results show that individuals with varus alignment at the knee will be exposed to greater stress at the medial compartment of the articular cartilage of the tibia due to the increased varus moment that occurs during single leg support.


2011 ◽  
Vol 145 ◽  
pp. 390-394
Author(s):  
Ha Ju So ◽  
Ki Young Kwak ◽  
Seong Hyun Kim ◽  
Dong Wook Kim

Normal walking on staircases is a very important ordinary activity. It is a complicated motion that requires a big muscular strength and moment, and a big joint exercise scope. Due to such characteristics, staircase walking may be an obstacle to those with weakened lower limb muscle strength, and actually, fall injury accidents occur. Existing studies focus on dynamic changes in staircase walking. However, this study aimed to analyze staircase-walking characteristics evidenced when applying vibratory somatosensory stimulus to the ankle joint in a bid to reduce the risk of fall injuries associated with staircase walking. Five elderly male subjects, who had no disease related to the musculoskeletal system, participated in experiments. Experiments were held in a motion analysis laboratory equipped with 3-D motion analysis systems, force platforms, etc. In order to gather motion data, subjects wore markers and vibratory stimulation devices designed to apply somatosensory stimulus to ankle joints, and climbed down a staircase with the height adjusted appropriately. Using motion data gathered from staircase-walking, the ankle joint, knee joint and hip joint angles were obtained, and thus each joint's contribution to the motion was calculated. In the case of vibratory somatosensory stimuli being applied to the Achilles's tendon, the ankle joint contributed more to the motion of climbing down a staircase than the knee joint and the hip joint did. On the other hand, in the case of vibratory somatosensory stimulus being applied to the anterior tibialis, the ankle joint contribution was lowered, and to make up for it, the knee joint and the hip joint contribution increased. This outcome revealed that the effect of the vibratory somatosensory stimulation applied to the ankle joint can appear in not only the ankle joint, but also in the whole lower limbs due to chain reaction.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Hyuck Min Kwon ◽  
Jin-Ah Lee ◽  
Yong-Gon Koh ◽  
Kwan Kyu Park ◽  
Kyoung-Tak Kang

Abstract Background Unicompartmental knee arthroplasty (UKA) is an effective treatment for end-stage, symptomatic unicompartmental osteoarthritis of the knee joint. However, patellofemoral joint degeneration is a contraindication to medial UKA. Therefore, the objective of this study was to evaluate the biomechanical effect of medial UKA using fixed-bearing (FB) and mobile-bearing (MB) design prostheses on the patellofemoral joint. Methods A three-dimensional finite-element model of a normal knee joint was developed using medical image data. We performed statistical analysis for each model. The differences in contact stress on the patellofemoral joint and the quadriceps force between the FB and MB designs were evaluated under a deep-knee-bend condition. Results At an early flexion angle, the results of contact stress showed no significant difference between the FB and MB medial UKA models compared with the intact model. However, at high flexion angles, we observed a significant increase in contact stress with the FB models compared with the intact model. On the contrary, in the case of the MB models, we found no statistically significant increment compared with the intact model. A larger quadriceps force was needed to produce an identical flexion angle for both the FB and MB UKA designs than for the intact model. At high flexion angles, a significant increase quadriceps force whit the FB model compared with the intact model. Conclusions Our results indicate that with medial UKA, the contact stress increased and greater quadriceps force was applied to the patellofemoral joint. However, performing UKA on a patellofemoral joint with osteoarthritis should not be difficult, unless anterior knee pain is present, because the increase in contact stress is negligible.


Sign in / Sign up

Export Citation Format

Share Document