scholarly journals Extraction and Spectroscopic Analysis of Humic Substances with the Goal of Recycling Construction Sludge:

Author(s):  
Daisuke Suzuki ◽  
Ryo Shoji
Author(s):  
Yuhei Yamamoto ◽  
Daisuke Aosai ◽  
Takashi Mizuno

The chemical state of rare earth elements (REEs) in groundwater was determined by a combination of ultrafiltration techniques maintaining in–situ pressures and anaerobic conditions, speciation considering contribution of natural organic matter, and fingerprinting using REE patterns of the stability constants for probable complexes of REEs in groundwater. Groundwater samples were collected from a horizontal borehole at a depth of 200 mbGL (meter below ground level) in the Mizunami Underground Research Laboratory (MIU), Gifu, Japan. Spectroscopic analysis for colloidal matter on a membrane filter was also conducted to estimate chemical properties of colloidal ligands. Results of this study suggest that REEs–humic complexes are the dominant chemical states of REEs in this groundwater. The presence of humic substances in groundwater was also confirmed by spectroscopic analysis. Thus, it is expected that chemical behavior of REEs mainly is dependent on humic substances. The information of chemical state of REEs is useful for prediction of behavior of trivalent actinides in groundwater.


Author(s):  
B. J. Grenon ◽  
A. J. Tousimis

Ever since the introduction of glutaraldehyde as a fixative in electron microscopy of biological specimens, the identification of impurities and consequently their effects on biologic ultrastructure have been under investigation. Several reports postulate that the impurities of glutaraldehyde, used as a fixative, are glutaric acid, glutaraldehyde polymer, acrolein and glutaraldoxime.Analysis of commercially available biological or technical grade glutaraldehyde revealed two major impurity components, none of which has been reported. The first compound is a colorless, water-soluble liquid with a boiling point of 42°C at 16 mm. Utilizing Nuclear Magnetic Resonance (NMR) spectroscopic analysis, this compound has been identified to be — dihydro-2-ethoxy 2H-pyran. This impurity component of the glutaraldehyde biological or technical grades has an UV absorption peak at 235nm. The second compound is a white amorphous solid which is insoluble in water and has a melting point of 80-82°C. Initial chemical analysis indicates that this compound is an aldol condensation product(s) of glutaraldehyde.


Author(s):  
S. A. Livesey ◽  
A. A. del Campo ◽  
E. S. Griffey ◽  
D. Ohlmer ◽  
T. Schifani ◽  
...  

The aim of this study is to compare methods of sample preparation for elemental analysis. The model system which is used is the human erythrocyte. Energy dispersive spectroscopic analysis has been previously reported for cryofixed and cryosectioned erythrocytes. Such work represents the reference point for this study. The use of plastic embedded samples for elemental analysis has also been documented. The work which is presented here is based on human erythrocytes which have been either chemically fixed and embedded or cryofixed and subsequently processed by a variety of techniques which culminated in plastic embedded samples.Heparinized and washed erythrocytes were prepared by the following methods for this study :(1). Chemical fixation in 4% paraformaldehyde/0.25% glutaraldehyde/0.2 M sucrose in 0.1 M Na cacodylate, pH 7.3 for 30 min, followed by ethanol dehydration, infiltration and embedding in Lowicryl K4M at -20° C.


2002 ◽  
Vol 15 (6) ◽  
pp. 449-453 ◽  
Author(s):  
G. Grygierczyk ◽  
Walter Fischer ◽  
M. Sajewicz ◽  
P. Kuś ◽  
R. Wrzalik ◽  
...  

2004 ◽  
Vol 40 (1) ◽  
pp. 8
Author(s):  
N. Dzyuban ◽  
E. S. Bikbulatov ◽  
E. M. Bikbulatova ◽  
I. A. Kuznetsova

2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document