scholarly journals Lipase-catalyzed transesterification of epoxidized soybean oil to prepare epoxy methyl esters

2018 ◽  
Vol 69 (2) ◽  
pp. 247 ◽  
Author(s):  
W. Liu ◽  
F. Duan

Epoxidized soybean oil methyl esters could be efficiently prepared with the transesterification of epoxidized soybean oil (ESBO) with a lower dosage of methanol using lipase Novozym 435 as catalyst. The optimum parameters were as follows: the molar ratio of 5:1 (methanol to ESBO), 5% Novozym 435 as catalyst, at 45 °C for 14 h, with a stirring speed of 600rpm, under which the epoxidized soybean oil methyl esters (ESBOME) could be obtained at a 95.7% yield. During the enzymatic transesterification process, the oxirane oxygen values were kept unchangeable, which indicated that excellent functional group tolerance could be achieved under such mild reaction conditions. In addition, the recyclability of the immobilized enzyme Novozym 435 in this transesterification process was examined and the results showed that the biocatalyst could be reused ten times without losing any reaction activity or selectivity. And the final products of ESBOME were also identified by IR and NMR analysis. The kinetic data obtained followed the Ping-Pong Bi mechanism model (Vmax = 6.132 mol·L-1min-1, Km,S = 0,0001 mol·L-1, Km, A = 796.148 mol·L-1, Ki, A = 0,0004 mol·L-1) with competitive inhibition by methanol.

Author(s):  
SUNNY SONI ◽  
MADHU AGARWAL

Biodiesel is a renewable liquid fuel made from natural, renewable biological sources such as edible and non edible oils. Over the last years, biodiesel has gained more market due to its benefits and because it appears as the natural substitute for diesel. Reasons for growing interest in biodiesel include its potential for reducing noxious emissions, potential contributions to rural economic development, as an additional demand center for agricultural commodities, and as a way to reduce reliance on foreign oil. Biodiesel was prepared from soybean oil by transesterification with methanol in the presence of cement clinker. Cement clinker was examined as a catalyst for a conversion of soybean oil to fatty acid methyl esters (FAMEs). It can be a promising heterogeneous catalyst for the production of biodiesel fuels from soybean oil because of high activity in the conversion and no leaching in the transesterification reaction. The reaction conditions were optimized. A study for optimizing the reaction parameters such as the reaction temperature, and reaction time, was carried out. The catalyst cement clinker composition was characterized by XRF. The results demonstrate that the cement clinker shows high catalytic performance & it was found that the yield of biodiesel can reach as high as 84.52% after 1 h reaction at 65°C, with a 6:1 molar ratio of methanol to oil, 21 wt% KOH/cement clinker as catalyst.


RSC Advances ◽  
2018 ◽  
Vol 8 (23) ◽  
pp. 13048-13053 ◽  
Author(s):  
Wei Liu ◽  
Feifei Duan ◽  
Yanlan Bi

A sustainable method has been developed for fast transesterification of epoxidized soybean oil (ESBO) to prepare epoxy methyl esters (ESBOME) at 25 °C with NaOH as catalyst.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Elisa d'Avila Cavalcanti-Oliveira ◽  
Priscila Rufino da Silva ◽  
Alessandra Peçanha Ramos ◽  
Donato Alexandre Gomes Aranda ◽  
Denise Maria Guimarães Freire

The process of biodiesel production by the hydroesterification route that is proposed here involves a first step consisting of triacylglyceride hydrolysis catalyzed by lipase from Thermomyces lanuginosus (TL 100L) to generate free fatty acids (FFAs). This step is followed by esterification of the FFAs with alcohol, catalyzed by niobic acid in pellets or without a catalyst. The best result for the enzyme-catalyzed hydrolysis was obtained under reaction conditions of 50% (v/v) soybean oil and 2.3% (v/v) lipase (25 U/mL of reaction medium) in distilled water and at 60∘C; an 89% conversion rate to FFAs was obtained after 48 hours of reaction. For the esterification reaction, the best result was with an FFA/methanol molar ratio of 1:3, niobic acid catalyst at a concentration of 20% (w/w FFA), and 200∘C, which yielded 92% conversion of FFAs to soy methyl esters after 1 hour of reaction. This study is exceptional because both the hydrolysis and the esterification use a simple reaction medium with high substrate concentrations.


2020 ◽  
Vol 3 (2) ◽  
pp. 163
Author(s):  
Erin Ryantin Gunawan ◽  
Dedy Suhendra ◽  
Rohana Rohana ◽  
Desy Komalasari

Methyl esters are derivatives of triglycerides (oils or fats) that can be produced through esterification and transesterification process. One example of the methyl esters are widely used as an industrial raw material is methyl linoleate. Methyl linoleate is a colorless liquid with molecular formula C19H34O2. Methyl linoleate is a fatty acid ester and has a lot of common use as biodiesel ingredient, textiles, in medical research, emulsifiers and lubricants. The raw materials commonly used for the synthesis of methyl esters are palm oil, coconut oil, soybean oil, and others. But these oils are edible oil materials, so that in this case the raw materials that will be used is the cotton seed that has not been exploited well. The optimization reaction of the methyl linoleate synthesis through enzymatic transesterification from cotton (Ceiba pentandra L.) seed oils and methanol by Response Surface Methodology (RSM) was carried out.  Immobilized lipase (lipozymeTL IM)  used as catalyst. This research aims to optimize the reaction by observing variety of conditions that are influenced by several variables, such asreaction time, molar ratio, the amount of enzyme and the reaction temperature.  Design Expert v.7 software used to view the interaction between the variables via RSM. The mathematical equations and statistical methods showed that the optimum condition of the enzymatic transesterification was obtained at 0.15 gram of amount of the enzyme, the ratio of cotton seed oils: methanol of 1: 2.05 (g/g), a reaction time of 14 hours and a temperature of 49.95 oC with the predicted  and actual percentages yield of 37.87 and 38.24%, respectively. The model recommended for obtaining optimum results is a quadratric model with a R-squared value of 0.6957. Keywords: Methyl linoleate, Cotton seed oils, Lipozyme, Optimization study, Design Expertv.7


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1282
Author(s):  
Chengyu Jiang ◽  
Li Wang ◽  
Xin Huang ◽  
Song Zhu ◽  
Chaoyang Ma ◽  
...  

Vinyl stearate was added to enzymatic transesterification of (−)-Epigallocatechin-3-O-gallate (EGCG) to enhance its lipophilicity and antioxidant ability in a non-aqueous system. The lipase DF “Amano” 15 was used as the catalyst. The optimal reaction conditions were: acetonitrile as the solvent, the molar ratio of vinyl stearate: EGCG as 3:1, an enzyme amount of 4.0% (ratio of substrate mass), and a reaction temperature and time of 50 °C and 96 h, respectively, achieving 65.2% EGCG conversion. HPLC–MS and NMR were used to determine the structure of EGCG stearyl derivative (3″,5″-2-O-stearyl-EGCG). The lipophilicity of EGCG stearyl derivatives (3.49 ± 0.34) was higher (5.06 times) than that of the parent EGCG (0.69 ± 0.08). Furthermore, EGCG stearyl derivatives had excellent lipid oxidation compared with BHT, BHA, and parent EGCG. The POVs of soybean oil with EGCG stearyl derivatives (18.17 ± 0.92 mEq/kg) were significantly reduced (by 62.5%) at 21 d compared with those of EGCG (48.50 ± 1.23 mEq/kg). These results indicate that EGCG derivatives have broad antioxidant application prospects in lipophilic environments/high-fat food.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Regina C. R. Santos ◽  
Rômulo B. Vieira ◽  
Antoninho Valentini

A carbonate mineral, dolomite, was used as a heterogeneous catalyst to produce methyl-esters from soybean oil. The samples were analyzed by XRF, TGA, XRD, TPD-CO2, and SEM. The calcination of dolomite at 800°C/1 h resulted in a highly active mixed metal oxides. In addition, the influence of the reaction variables such as the temperature, catalyst amount, and methanol/soybean oil molar ratio in methyl-ester production was optimized by the application of a central composite design in conjunction with the response surface methodology (RSM). The XRF analysis is carried out after the reuses procedure which shows that the deactivation process is mainly due to the selective calcium leaching. Overall, the calcined dolomite exhibited high catalytic activity at moderate operating conditions for biodiesel production.


2012 ◽  
Vol 581-582 ◽  
pp. 197-201 ◽  
Author(s):  
Ling Mei Yang ◽  
Peng Mei Lv ◽  
Zhen Hong Yuan ◽  
Wen Luo ◽  
Hui Wen Li ◽  
...  

Transesterification of soybean oil with methanol to methyl eaters was found proceed in the presence of KOH loaded on five different oxides (CaO, MgO, Al2O3, Bentonite, kaolin) as heterogeneous catalysts. The structure and performance of these catalysts were studied using the techniques of XRD, CO2-TPD, and SEM. It was found that the 15wt% KOH/CaO catalyst provided best activity. In the presence of this catalyst, the yield of fatty acid methyl esters was 97.1%. The reaction conditions were as follows: methanol to soybean oil molar ratio was 16:1, temperature of 65 °C, reaction time of 1 h, and a catalyst amount of 4 wt%. The catalysts of KOH loaded on CaO showed a new crystalline phase of K2O. However, the catalyst of 15-KOH/CaO has more basic sites than the catalyst of 15-KOH/MgO. Therefore, the catalyst of 15-KOH/CaO has been associated with higher transesterification activity.


2014 ◽  
Vol 775-776 ◽  
pp. 705-711 ◽  
Author(s):  
Joelda Dantas ◽  
J.R.D. Santos ◽  
F.N. Silva ◽  
A.S. Silva ◽  
A.C.F.M. Costa

Research with emphasis on substitution of energy sources used in worldwide for renewable energy undoubtedly indicates that the use of biodiesel would be an option to increase the income in rural areas, reduction in oil derivatives spending and also new opportunities for job creation. Soon, in purpose to contribute with the research growth, this research proposes to evaluate the new catalysts performance as nanoferrites Ni0,5Zn0,5Fe2O4 (pure) and Ni0,1Cu0,4Zn0,5Fe2O4 (doped with 0.4 mol of Cu2+) in transesterification reactions of soybean oil methyl. For both samples were synthesized by chemical method in the stoichiometry of the combustion reaction, using urea as a fuel source and a resistance heating coil. During synthesis were measured time and combustion temperature. Later they were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), textural analysis (BET) and subjected to catalytic tests bench. The reaction conditions used in the transesterification were: 10 g of oil, 2 h reaction time, molar ratio of 1:20 oil and alcohol, 4% (w/w) of catalyst and reaction temperature of 160°C. Finally, the reaction product was characterized for conversion into methyl esters by gas chromatography. Results has shown only the presence of the inverse spinel phase, characteristic of Ni-Zn ferrite for both samples, with crystallite size of 26 and 29 nm, respectively. The thermogravimetric analysis has shown that samples are thermally stable, with a weight loss of 4.9 and 3.7%, respectively. The surface area and particle size were 48.89 m2g-1 and 23 nm, and 18.06 m2g-1 and 62 nm, respectively. The conversion results obtained by the transesterification reaction were 13 and 50% Ni0,5Zn0,5Fe2O4 and Ni0,1Cu0,4Zn0,5Fe2O4, respectively, indicating that sample with presence of copper was 26% more effectively, thus being one promising catalyst for the transesterification reaction, which aims to obtain biodiesel.


2019 ◽  
Author(s):  
Chem Int

Biodiesel produced by transesterification process from vegetable oils or animal fats is viewed as a promising renewable energy source. Now a day’s diminishing of petroleum reserves in the ground and increasing environmental pollution prevention and regulations have made searching for renewable oxygenated energy sources from biomasses. Biodiesel is non-toxic, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine which contributes minimal amount of global warming gases such as CO, CO2, SO2, NOX, unburned hydrocarbons, and particulate matters. The chemical composition of the biodiesel was examined by help of GC-MS and five fatty acid methyl esters such as methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linoleneate were identified. The variables that affect the amount of biodiesel such as methanol/oil molar ratio, mass weight of catalyst and temperature were studied. In addition to this the physicochemical properties of the biodiesel such as (density, kinematic viscosity, iodine value high heating value, flash point, acidic value, saponification value, carbon residue, peroxide value and ester content) were determined and its corresponding values were 87 Kg/m3, 5.63 Mm2/s, 39.56 g I/100g oil, 42.22 MJ/Kg, 132oC, 0.12 mgKOH/g, 209.72 mgKOH/g, 0.04%wt, 12.63 meq/kg, and 92.67 wt% respectively. The results of the present study showed that all physicochemical properties lie within the ASTM and EN biodiesel standards. Therefore, mango seed oil methyl ester could be used as an alternative to diesel engine.


Sign in / Sign up

Export Citation Format

Share Document