The frictional behaviour of surgical suture interacting with skin substitute

2017 ◽  
Author(s):  
G. Zhang
2018 ◽  
Vol 162 ◽  
pp. 228-235 ◽  
Author(s):  
Gangqiang Zhang ◽  
Tianhui Ren ◽  
Sheng Zhang ◽  
Xiangqiong Zeng ◽  
Emile van der Heide

Author(s):  
Robin R. Szarmach ◽  
Jean Livingston ◽  
George T. Rodeheaver ◽  
John G. Thacker ◽  
Richard Edlich

2018 ◽  
Author(s):  
Antonios Keirouz ◽  
Giuseppino Fortunato ◽  
Anthony Callanan ◽  
Norbert Radacsi

Scaffolds and implants used for tissue engineering need to be adapted for their mechanical properties with respect to their environment within the human body. Therefore, a novel composite for skin tissue engineering is presented by use of blends of Poly(vinylpyrrolidone) (PVP) and Poly(glycerol sebacate) (PGS) were fabricated via the needleless electrospinning technique. The formed PGS/PVP blends were morphologically, thermochemically and mechanically characterized. The morphology of the developed fibers related to the concentration of PGS, with high concentrations of PGS merging the fibers together plasticizing the scaffold. The tensile modulus appeared to be affected by the concentration of PGS within the blends, with an apparent decrease in the elastic modulus of the electrospun mats and an exponential increase of the elongation at break. Ultraviolet (UV) crosslinking of PGS/PVP significantly decreased and stabilized the wettability of the formed fiber mats, as indicated by contact angle measurements. In vitro examination showed good viability and proliferation of human dermal fibroblasts over the period of a week. The present findings provide important insights for tuning the elastic properties of electrospun material by incorporating this unique elastomer, as a promising future candidate for skin substitute constructs.


Author(s):  
Amrita Dasgupta ◽  
Nardos Sori ◽  
Stella Petrova ◽  
Yas Maghdouri-White ◽  
Nick Thayer ◽  
...  

Medicina ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 143
Author(s):  
Herbert Leopold Haller ◽  
Matthias Rapp ◽  
Daniel Popp ◽  
Sebastian Philipp Nischwitz ◽  
Lars Peter Kamolz

Successful research and development cooperation between a textile research institute, the German Federal Ministry of Education and Research via the Center for Biomaterials and Organ Substitutes, the University of Tübingen, and the Burn Center of Marienhospital, Stuttgart, Germany, led to the development of a fully synthetic resorbable temporary epidermal skin substitute for the treatment of burns, burn-like syndromes, donor areas, and chronic wounds. This article describes the demands of the product and the steps that were taken to meet these requirements. The material choice was based on the degradation and full resorption of polylactides to lactic acid and its salts. The structure and morphology of the physical, biological, and degradation properties were selected to increase the angiogenetic abilities, fibroblasts, and extracellular matrix generation. Water vapor permeability and plasticity were adapted for clinical use. The available scientific literature was screened for the use of this product. A clinical application demonstrated pain relief paired with a reduced workload, fast wound healing with a low infection rate, and good cosmetic results. A better understanding of the product’s degradation process explained the reduction in systemic oxidative stress shown in clinical investigations compared to other dressings, positively affecting wound healing time and reducing the total area requiring skin grafts. Today, the product is in clinical use in 37 countries. This article describes its development, the indications for product growth over time, and the scientific foundation of treatments.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 854
Author(s):  
Ahmad Hivechi ◽  
Peiman Brouki Milan ◽  
Khashayar Modabberi ◽  
Moein Amoupour ◽  
Kaveh Ebrahimzadeh ◽  
...  

Loss of skin integrity can lead to serious problems and even death. In this study, for the first time, the effect of exopolysaccharide (EPS) produced by cold-adapted yeast R. mucilaginosa sp. GUMS16 on a full-thickness wound in rats was evaluated. The GUMS16 strain’s EPS was precipitated by adding cold ethanol and then lyophilized. Afterward, the EPS with polycaprolactone (PCL) and gelatin was fabricated into nanofibers with two single-needle and double-needle procedures. The rats’ full-thickness wounds were treated with nanofibers and Hematoxylin and eosin (H&E) and Masson’s Trichrome staining was done for studying the wound healing in rats. Obtained results from SEM, DLS, FTIR, and TGA showed that EPS has a carbohydrate chemical structure with an average diameter of 40 nm. Cell viability assessments showed that the 2% EPS loaded sample exhibits the highest cell activity. Moreover, in vivo implantation of nanofiber webs on the full-thickness wound on rat models displayed a faster healing rate when EPS was loaded into a nanofiber. These results suggest that the produced EPS can be used for skin tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document