scholarly journals Frictional behaviour of AA7050/7.5B4Cp/Gr hybrid composites fabricated through stir casting

2021 ◽  
Vol 1070 (1) ◽  
pp. 012135
Author(s):  
R Ranjith ◽  
S Venkatesan ◽  
N S Sivakumar ◽  
P Naresh Kumar
2020 ◽  
pp. 491-494
Author(s):  
Kiran K ◽  
SuriyaPrakash M ◽  
Ravi Kumar K ◽  
Vijay Kumar M

In this experimental study, Aluminium alloy (AA) 6082 was strengthened with Tungsten Carbide and graphite through stir casting technique. Scanning Electron Microscope (SEM) was employed to study the wear performance of the Al/WC/Gr composites. Wear tests were carried out using a pin-ondisc apparatus. The input parameters in this study are the load applied (4, 8, 12, 16, and 20 kg), speed of sliding (1, 1.5, 2, 2.5 and 3 m/s) and distance slides (1000, 1500, 2000 and 2500 m). Response Surface Methodology (RSM) has been carried the use of MINITAB 14 software program to examine the rate of wear and frictional behaviour of the hybrid composites.


Author(s):  
V Vignesh Kumar ◽  
K Raja ◽  
T Ramkumar ◽  
M Selvakumar ◽  
TS Senthil Kumar

The research article addresses the reciprocating wear behaviour of hybrid AA7075 reinforced with boron carbide and boron nitride through a stir-casting technique. The experiment involved varying wt.% of the secondary particle boron carbide (3, 6 and 9) while boron nitride (3) was kept as constant. The hybrid composites were characterised using scanning electron microscopy coupled with energy dispersive spectroscopy. The hardness and tensile behaviour of the hybrid composites were evaluated. Reciprocating wear behaviour of the hybrid composites were examined using a tribometer by varying the wear parameters such as load and sliding distance. The results revealed that AA7075/6boron carbide/3boron nitride had better hardness, tensile and wear properties. The surface morphology of the wear samples was analysed using SEM.


The present work was planned to evaluate the mechanical properties of alumina reinforced aluminium alloy such hardness and compression behavior of al2o3 /aa7075 alloy metal matrix composites. Both, experimental and finite element analyses were carried out to establish tensile behaviour of the composites with different weight percentage of al2o3 fabricated by the stir casting process. The results concluded that addition of alumina to the aa7075 improves the mechanical properties of the composite. Further the results of FEA simulation of the composites are close to the actual results which shows that cost and time can be reduced if FEA is performed


In this research, an effort is made to familiarize and best potentials of the reinforcing agent in aluminum 7075 matrices with naturally occurring Beryl (Be) and Graphene (Gr) to develop a new hybrid composite material. A stir casting technique was adopted to synthesize the hybrid nanocomposites. GNPS were added in volume fractions of 0.5wt%, 1wt%, 1.5wt%, and 2wt% and with a fixed volume fraction of 6 wt.% of Beryl. As cast hybrid composites were microstructurally characterized with scanning electron microscopy and X-ray diffraction. Microstructure study through scanning electron microscope demonstrated that the homogeneous distribution reinforcement Beryl and GNPs into the Al7075 matrix. Brinell hardness and tensile strength of synthesized materials were investigated. The hybrid Al7075-Beryl-GNPs composites showed better mechanical properties compared with base Al7075 matrix material. The ascast Al7075-6wt.% Beryl-2wt.%GNPs showed 49.41% improvement in hardness and 77.09% enhancement in ultimate tensile strength over Al7075 alloy.


2017 ◽  
Vol 25 (3) ◽  
pp. 209-214 ◽  
Author(s):  
G. Venkatachalam ◽  
A. Kumaravel

This paper presents the characterization of A356 composite reinforced with fly ash and basalt ash produced by stir casting method. Aluminium metal matrix composites (AMC) are used in wide variety of applications such as structural, aerospace, marine, automotive etc. Stir casting is cost effective manufacturing process and it is useful to enhance the attractive properties of AMCs. Three sets of hybrid AMC are prepared by varying the weight fraction of the reinforcements (3% basalt + 7% fly ash, 5% basalt + 5% fly, 7% basalt + 3% fly ash). The effect of reinforcements on the mechanical properties of the hybrid composites such as hardness, tensile, compressive and impact strength were studied. The obtained results reveal that tensile, compressive and impact strength was increased when weight fraction of fly ash increased, whereas the hardness increases when weight fraction of the basalt ash increased. Microscopic study reveals the dispersion of the reinforcements in the matrix.


2014 ◽  
Vol 97 ◽  
pp. 703-712 ◽  
Author(s):  
K. Umanath ◽  
S.T. Selvamani ◽  
K. PalanikumarK ◽  
D. Niranjanavarma

2020 ◽  
Vol 856 ◽  
pp. 29-35
Author(s):  
Sweety Mahanta ◽  
M. Chandrasekaran ◽  
Sutanu Samanta

Aluminium matrix composites (AMCs) have emerged as the substitute for the monolithic (unreinforced) materials over the past few decades. The applications of AMCs are common in automotive, aerospace, defence and biomedical sectors due to its lower weight, high strength, high resistance against corrosion and high thermal and electrical conductivity. In this work, it is aimed fabricate a new class Al 7075 based hybrid composites reinforcing with nanoparticulates suitable for automotive application. Al7075 reinforced with fixed quantity of boron carbide (B4C) (1.5 wt.%) and varying wt % of flyash (0.5 wt.%, 1.0 wt.%, 1.5 wt.%) is fabricated using ultrasonic-assisted stir casting technique. Physical and mechanical characterization such as density, porosity, micro hardness, tensile strength and impact strength were estimated for three different compositions. The tensile strength and percentage increase in hardness value of the nanocomposite Al7075-B4C (1.5 wt. %)-flyash (0.5 wt. %): HNC3 found maximum as 294 MPa and 32.93%. In comparison with Al7075 alloy the impact strength of HNC3 shows the highest percentage of 9.31% respectively.


2016 ◽  
Vol 61 (2) ◽  
pp. 651-656 ◽  
Author(s):  
A. J. Dolata ◽  
M. Dyzia ◽  
S. Boczkal

Abstract The aim of the work was to perform adequate selection of the phase composition of the composite designated for permanent - mould casting air compressor pistons. The hybrid composites based on AlSi7Mg matrix alloy reinforced with mixture of silicon carbide (SiC) and glassy carbon (Cg) particles were fabricated by the stir casting method. It has been shown that the proper selection of chemical composition of matrix alloy and its modification by used magnesium and strontium additions gives possibility to obtain both the advantageous casting properties of composite suspensions as well as good bonding between particles reinforcements and matrix.


Sign in / Sign up

Export Citation Format

Share Document