scholarly journals A Reconfigurable IoT Architecture with Energy Efficient Event-Based Data Traffic Reduction Scheme

2017 ◽  
Vol 13 (02) ◽  
pp. 34 ◽  
Author(s):  
Varun Tiwari ◽  
Avinash Keskar ◽  
NC Shivaprakash

Designing an Internet of Things (IoT) enabled environment requires integration of various things/devices. Integrating these devices require a generalized approach as these devices can have different communication protocols. In this paper, we have proposed generalized nodes for connecting various devices. These nodes are capable of creating a scalable local wireless network that connects to the cloud through a network gateway. The nodes also support over the air programming to re-configure the network from the cloud. As number of devices connected to the cloud increases, the network traffic also increases. In order to reduce the network traffic we have used different data transfer schemes for the network. We have also proposed an event-based data transfer scheme for situations where there is low probability of change in sensor value. The experimental results shows that the event-based scheme reduces the data traffic by up to 48% under practical conditions without any loss of information compared to priority based data transfer. We have also shown that the proposed scheme is more reliable for data transfer in a large network with a success rate of 99.5% measured over 200 minutes for 1201 data packets.

We are presenting a new unified structure for dynamic distributed forwarding and congestion-controlled network caching enabled. Improved use of data transfer capacity and storage resources in Stochastic networks in aspects of energy-efficient and profit-maximization. In the investigation of stochastic networks, a framework has been developed for combined implementation of caching, forwarding and traffic command called the Markov Decision Process in Stochastic Learning (MDPSL) strategy. The MDPSL structure uses a virtual plane that manages customer request prices, as well as a real plane that processes actual interest packets and data packets. It can accomplish dynamically structured transmission and caching. It can fulfill dynamically distributed forwarding and caching. Focus on MDPSL communication and queuing systems, including wireless networks with time-varying channels, mobility, and arrival of random traffic. Using this framework, estimates of the time are optimized such as throughput, utility throughput, energy, and distortion. Explicit performance-delay tradeoffs are provided to show the expense of attaining optimality. A congestion control algorithm is intended to improve client services subject to network stability when optimally coupled with forwarding and caching algorithms


2013 ◽  
Vol 6 (3) ◽  
pp. 359-369
Author(s):  
Partha Pratim Bhattacharya ◽  
Jyoti Saraswat

Wireless Sensor Networks (WSNs) are generally energy and resource constrained. In most WSN applications the traffic pattern is from sensor-to-sink and for effective utilization of available resources in network data aggregation is employed. If a data packet is lost due to node failure or collision the correlated information content by data packets is lost. Existing protocols that provide reliable data transfer for sensor-to-sink traffic are either not energy efficient or they provide reliability at the event level. Energy efficiency can be improved by employing proper duty cycle values. By extending the concept of monitors the proposed protocol provides packet level reliability and improves the energy efficiency by employing duty cycles. To further decrease the energy consumption only a subset of nodes is chosen as active nodes to transfer the data. The performance of the proposed protocol is evaluated using Matlab. Results show that protocol has significant improvement in terms of energy saving, throughput and packet delivery ratio.


2021 ◽  
Vol 10 (2) ◽  
pp. 30
Author(s):  
Radwan S. Abujassar ◽  
Husam Yaseen ◽  
Ahmad Samed Al-Adwan

Nowadays, networks use many different paths to exchange data. However, our research will construct a reliable path in the networks among a huge number of nodes for use in tele-surgery using medical applications such as healthcare tracking applications, including tele-surgery which lead to optimizing medical quality of service (m-QoS) during the COVID-19 situation. Many people could not travel due to the current issues, for fear of spreading the covid-19 virus. Therefore, our paper will provide a very trusted and reliable method of communication between a doctor and his patient so that the latter can do his operation even from a far distance. The communication between the doctor and his/her patient will be monitored by our proposed algorithm to make sure that the data will be received without delay. We test how we can invest buffer space that can be used efficiently to reduce delays between source and destination, avoiding loss of high-priority data packets. The results are presented in three stages. First, we show how to obtain the greatest possible reduction in rate variability when the surgeon begins an operation using live streaming. Second, the proposed algorithm reduces congestion on the determined path used for the online surgery. Third, we have evaluated the affection of optimal smoothing algorithm on the network parameters such as peak-to-mean ratio and delay to optimize m-QoS. We propose a new Smart-Rout Control algorithm (s-RCA) for creating a virtual smart path between source and destination to transfer the required data traffic between them, considering the number of hops and link delay. This provides a reliable connection that can be used in healthcare surgery to guarantee that all instructions are received without any delay, to be executed instantly. This idea can improve m-QoS in distance surgery, with trusted paths. The new s-RCA can be adapted with an existing routing protocol to track the primary path and monitor emergency packets received in node buffers, for direct forwarding via the demand path, with extended features.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sicong Wang ◽  
Chen Wei ◽  
Yuanhua Feng ◽  
Hongkun Cao ◽  
Wenzhe Li ◽  
...  

AbstractAlthough photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.


Author(s):  
Setareh Behroozi ◽  
Vijay Raghunathan ◽  
Anand Raghunathan ◽  
Younghyun Kim

Author(s):  
Quang Thanh Tran ◽  
Li Jun Hao ◽  
Quang Khai Trinh

Wireless traffic prediction plays an important role in network planning and management, especially for real-time decision making and short-term prediction. Systems require high accuracy, low cost, and low computational complexity prediction methods. Although exponential smoothing is an effective method, there is a lack of use with cellular networks and research on data traffic. The accuracy and suitability of this method need to be evaluated using several types of traffic. Thus, this study introduces the application of exponential smoothing as a method of adaptive forecasting of cellular network traffic for cases of voice (in Erlang) and data (in megabytes or gigabytes). Simple and Error, Trend, Seasonal (ETS) methods are used for exponential smoothing. By investigating the effect of their smoothing factors in describing cellular network traffic, the accuracy of forecast using each method is evaluated. This research comprises a comprehensive analysis approach using multiple case study comparisons to determine the best fit model. Different exponential smoothing models are evaluated for various traffic types in different time scales. The experiments are implemented on real data from a commercial cellular network, which is divided into a training data part for modeling and test data part for forecasting comparison. This study found that ETS framework is not suitable for hourly voice traffic, but it provides nearly the same results with Holt–Winter’s multiplicative seasonal (HWMS) in both cases of daily voice and data traffic. HWMS is presumably encompassed by ETC framework and shows good results in all cases of traffic. Therefore, HWMS is recommended for cellular network traffic prediction due to its simplicity and high accuracy.  


2020 ◽  
Vol 6 (1) ◽  
pp. 100-108
Author(s):  
I. Kaisina

This paper investigates the process of multi-stream data transmission from several unmanned aerial vehicles (UAV) to a ground station. We can observe a mathematical model of the data transfer process at the application level of the OSI model (from flying nodes to a ground station). The Poisson – Pareto packet process is used to describe the multi-stream data traffic. The results of simulation are obtained using the network simulator NS-3. It is considered a system for emulating the process of multi-stream data transmission from UAV to a ground station. Acording to the results of studies for multi-stream data transmission it is clear that the increase of the UAV source nodes which simultaneously transmit data to a ground station needs higher requirements for Goodput.


Sign in / Sign up

Export Citation Format

Share Document