scholarly journals A Novel Wireless Sensor Network Architecture Based on Cloud Computing and Big Data

2017 ◽  
Vol 13 (12) ◽  
pp. 18 ◽  
Author(s):  
Changtong Song

<span style="font-family: 'Times New Roman',serif; font-size: 10pt; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-language: DE; mso-bidi-language: AR-SA;">To explore big data processing and its application in wireless sensor network (WSN), this paper studies structural construction of the WSN based on big data processing, and numerically simulates SVC4WSN and MDF4LWSN architectures. Moreover, the relationship between the optimal network layer and node communication radius was verified at different node densities. The results indicate that the proposed model achieved better lifecycle and loading balancing effect than the other network.</span>

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hongsheng Yin ◽  
Honggang Qi ◽  
Jingwen Xu ◽  
Xin Huang ◽  
Anping He

The sensor nodes of multitask wireless network are constrained in performance-driven computation. Theoretical studies on the data processing model of wireless sensor nodes suggest satisfying the requirements of high qualities of service (QoS) of multiple application networks, thus improving the efficiency of network. In this paper, we present the priority based data processing model for multitask sensor nodes in the architecture of multitask wireless sensor network. The proposed model is deduced with the M/M/1 queuing model based on the queuing theory where the average delay of data packets passing by sensor nodes is estimated. The model is validated with the real data from the Huoerxinhe Coal Mine. By applying the proposed priority based data processing model in the multitask wireless sensor network, the average delay of data packets in a sensor nodes is reduced nearly to 50%. The simulation results show that the proposed model can improve the throughput of network efficiently.


2018 ◽  
Vol 14 (11) ◽  
pp. 4
Author(s):  
Qiong Ren

<p class="0abstract"><span lang="EN-US">To explore the wireless sensor network (WSN) structure, the cooperative WSN architecture of mass data processing based on cloud computing is studied. The technology of WSN and cloud computing is deeply discussed. The system and node structure of WSN are studied by theoretical analysis method, and the performance of the WSN is studied by using the numerical simulation method. The mass data processing technology based on Map Reduce and its application in WSN are discussed. The numerical simulation method is used to experiment on the architecture of SVC4WSN and MD4LWSN. The relationship between the optimal network number and the node communication radius at different node density is verified. Moreover, the energy and time delay </span><span lang="EN-US">Reduce </span><span lang="EN-US">path is compared with three protocols of LEACH, PEGASIS and PEDAP. The results show that the two Reduce paths have better performance in both network survival time and the total time slot of data acquisition.</span></p>


Author(s):  
Satya Ranjan Biswal ◽  
Santosh Kumar Swain

: Security is one of the important concern in both types of the network. The network may be wired or wireless. In case of wireless network security provisioning is more difficult in comparison to wired network. Wireless Sensor Network (WSN) is also a type of wireless network. And due to resource constraints WSN is vulnerable against malware attacks. Initially, the malware (virus, worm, malicious code, etc.) targets a single node of WSN for attack. When a node of WSN gets infected then automatically start to spread in the network. If nodes are strongly correlated the malware spreads quickly in the network. On the other hand, if nodes are weakly correlated the speed of malware spread is slow. A mathematical model is proposed for the study of malware propagation dynamics in WSN with combination of spatial correlation and epidemic theory. This model is based on epidemic theory with spatial correlation. The proposed model is Susceptible-Exposed-Infectious-Recover-Dead (SEIRD) with spatial correlation. We deduced the expression of basic reproduction number. It helps in the study of malware propagation dynamics in WSN. The stability analysis of the network has been investigated through proposed model. This model also helps in reduction of redundant information and saving of sensor nodes’ energy in WSN. The theoretical investigation verified by simulation results. A spatial correlation based epidemic model has been formulated for the study of dynamic behaviour of malware attacks in WSN.


2020 ◽  
pp. 1-16
Author(s):  
Monali Prajapati ◽  
Dr. Jay Joshi

In the wireless sensor network (WSN), wireless communication is said to be the dominant power-consuming operation and it is a challenging one. Virtual Multiple-Input–Multiple-Output (V-MIMO) technology is considered to be the energy-saving method in the WSN. In this paper, a novel multihop virtual MIMO communication protocol is designed in the WSN via cross-layer design to enhance the energy efficiency, reliability, and end-to-end (ETE) and Quality of Service (QoS) provisioning. On the basis of the proposed protocol, the optimal set of parameters concerning the transmission and the overall consumed energy by each of the packets is found. Furthermore, the modeling of ETE latency and throughput of the protocol takes place with respect to the bit-error-rate (BER). A novel hybrid optimization algorithm referred as Flight Straight Moth Updated Particle Swarm Optimization (FS-MUP) is introduced to find the optimal BER that meets the QoS, ETE requirements of each link with lower power consumption. Finally, the performance of the proposed model is evaluated over the extant models in terms of Energy Consumption and BER as well.


2014 ◽  
Vol 628 ◽  
pp. 218-224 ◽  
Author(s):  
Konstantinos Oikonomou ◽  
George Koufoudakis ◽  
Eleni Kavvadia ◽  
Vassilios Chrissikopoulos

Wireless sensor networks can be beneficial for monitoring ambient vibrations in historical buildings where the installation of traditionally wired system may be either difficult due to wiring difficulties or forbidden due to prohibitive legislation. In this paper, a novel wireless sensor network architecture is presented that is focusing on efficiently monitoring ambient vibrations in historical buildings. Traditional wired monitoring technologies are often difficult to be installed in historical buildings either to high costs for installing the wires or to prohibitive legislations. Employing a wireless system could be beneficial. However, as there is no wireless system of high resolution available in the market, an innovative network architecture is proposed that efficiently combines the benefits of both the wired and wireless systems. The problem of synchronization that this novel architecture introduces, is also discussed in this paper along with a possible solution.


2022 ◽  
Author(s):  
K. Sakthisudhan ◽  
P. Sivakamasundari ◽  
M. Revathi ◽  
R. Shamini ◽  
K. Paul Joshua ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document