OPTIMAL DESIGN OF HOUSING ATTICS WITH INTEGRATED SOLAR COLLECTORS

2017 ◽  
Vol 12 (4) ◽  
pp. 1-20
Author(s):  
Rodrigo García Alvarado ◽  
Pedro G. Campos ◽  
Paulina Wegertseder

In order to reduce the increasing energy consumption for the domestic demands of existing single-family housing and take advantage of frequent building enlargements, this paper presents a methodology and supporting software tool for determining the optimal design configuration of an attic with integrated solar collectors. The analysis procedure is based on parametric modeling, energy simulation and the use of evolutionary algorithms for finding optimal designs. It has been implemented as a Web-platform for public use that provides users with a proposal of an attic shape with maximum solar energy collection, maximum living space and minimum construction envelope for each house according its size and orientation. The attic integrates PV, thermal and hybrid solar panels on one side of the roof. This paper describes the methodology and software design, assessment of the Web-platform usage and case-studies to verify its behavior. In a matter of minutes, the Web-platform enables users to select a specific attic design for each house that has integrated solar collectors that can produce energy to cover almost 100% of domestic energy consumption. The attics designed provide a nearly 30% increase in living space through the extension of one to four rooms, and the construction cost of the envelope is similar to that of a standard housing extension.

2017 ◽  
Author(s):  
Valeria Alcantara-Aragon ◽  
Susana Rodrigo-Cano ◽  
Maria Jose Martinez ◽  
Carmen Martinez ◽  
Jose Tapia ◽  
...  

Energies ◽  
2017 ◽  
Vol 10 (3) ◽  
pp. 301 ◽  
Author(s):  
Baoshou Zhang ◽  
Baowei Song ◽  
Zhaoyong Mao ◽  
Wenlong Tian ◽  
Boyang Li ◽  
...  

Author(s):  
Marcin Koniorczyk ◽  
Witold Grymin ◽  
Marcin Zygmunt ◽  
Dalia Bednarska ◽  
Alicja Wieczorek ◽  
...  

AbstractIn the analyses of the uncertainty propagation of buildings’ energy-demand, the Monte Carlo method is commonly used. In this study we present two alternative approaches: the stochastic perturbation method and the transformed random variable method. The energy-demand analysis is performed for the representative single-family house in Poland. The investigation is focused on two independent variables, considered as uncertain, the expanded polystyrene thermal conductivity and external temperature; however the generalization on any countable number of parameters is possible. Afterwards, the propagation of the uncertainty in the calculations of the energy consumption has been investigated using two aforementioned approaches. The stochastic perturbation method is used to determine the expected value and central moments of the energy consumption, while the transformed random variable method allows to obtain the explicit form of energy consumption probability density function and further characteristic parameters like quantiles of energy consumption. The calculated data evinces a high accordance with the results obtained by means of the Monte Carlo method. The most important conclusions are related to the computational cost reduction, simplicity of the application and the appropriateness of the proposed approaches for the buildings’ energy-demand calculations.


2019 ◽  
Vol 70 (3) ◽  
pp. 131-145 ◽  
Author(s):  
Raimondo Gallo ◽  
Gianluca Ristorto ◽  
Alex Bojeri ◽  
Nadia Zorzi ◽  
Gabriele Daglio ◽  
...  

Summary The aim of WEQUAL project (WEb service centre for QUALity multidimensional design and tele-operated monitoring of Green Infrastructures) is the development of a system that is able to support a quick environmental monitoring of riparian areas subjected to the realization of new green infrastructures (GI). The Wequal’s idea is to organize a service center able to manage both the Web Platform and the whole data collection and analysis processes. Through a personal account, the final user (designer, technician, researcher) can get access to the service and requires the evaluation of alternatives GI projects. On the Web Platform, a set of algorithms runs in order to calculate, through automatic procedures, all the ecological criteria required to evaluate a quality environmental index that describes the eco-morphological value of the monitored riparian areas. For this aim, the WEQUI index was developed, which uses 15 indicators that are easy to monitor. In this paper, the approach for environmental data collection and the procedures to perform the automatic assessment of two of the ecological criteria are described. For the computation, the implemented algorithms use data including the vegetation indexes, Digital Terrain Model (DTM), Digital Surface Model (DSM) and a 3D point cloud classification. All the raw data are collected by UAVs (Unmanned Aircraft Vehicle) equipped with a 3D Lidar, multispectral camera and RGB camera. Interpreting all the raw data collected by these sensors, using a multi-attribute approach, the WEQUI index is assessed. The computed ecological index is then used to assess the riparian environmental quality at ex-ante and ex-post river stabilization works. This index, integrated with additional not-technical or not-ecological indicators such as investment required, maintenance costs or social acceptance, can be used in multicriteria analyses in order to evaluate the intervention from a wider point of view. The platform is expected to be attractive for GI designers and policy makers by providing a shared environment, which is able to integrate the method of detection and evaluation of complex indexes and a multidimensional evaluation supported by an expert guide.


Sign in / Sign up

Export Citation Format

Share Document