Produced Water Management: Is it a Future Legacy or a Business Opportunity for Field Development

Author(s):  
Z. Khatib
2019 ◽  
Vol 59 (2) ◽  
pp. 827
Author(s):  
Brian D. Webster ◽  
Holly Churman ◽  
Chris Benjamin ◽  
Julian Long ◽  
Brett M. Goebel

Water management presents a host of challenges and opportunities for operators developing unconventional onshore gas fields. Water supply, recycling and disposal issues affect each stage of field development and operation. Sourcing water and production of produced and flow back water has important implications for water availability and management of the unique environmental risks. All water source and produced water decisions come with costs. From the treatment and reuse of coal seam gas (CSG) produced water, through to the storage and ultimate disposal of water containing elevated salinity and organic loads in shale fields, the costs for water management fundamentally contribute to the economics of unconventional gas developments. In this paper, we will draw on experience in both CSG and shale field water management to compare the respective water management challenges and opportunities faced by operators in these industries. A series of case studies will be used to highlight the differences between the CSG and shale fields. This will include assessment of a West Texas shale field development, where field specific data, such as well-to-well distance and travel time between them, has been used to identify and compare produced water management options. We will use these indicators to demonstrate how alternative ways to assess produced water options, based on economics, can reveal creative management strategies that achieve a variety of goals at every stage of field development, including maximising reuse and minimising disposal.


Modelling ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 224-239
Author(s):  
Saeed P. Langarudi ◽  
Robert P. Sabie ◽  
Babak Bahaddin ◽  
Alexander G. Fernald

This paper explores the possibility and plausibility of developing a hybrid simulation method combining agent-based (AB) and system dynamics (SD) modeling to address the case study of produced water management (PWM). In southeastern New Mexico, the oil and gas industry generates large volumes of produced water, while at the same time, freshwater resources are scarce. Single-method models are unable to capture the dynamic impacts of PWM on the water budget at both the local and regional levels, hence the need for a more complex hybrid approach. We used the literature, information characterizing produced water in New Mexico, and our preliminary interviews with subject matter experts to develop this framework. We then conducted a systematic literature review to summarize state-of-the-art of hybrid modeling methodologies and techniques. Our research revealed that there is a small but growing volume of hybrid modeling research that could provide some foundational support for modelers interested in hybrid modeling approaches for complex natural resource management issues. We categorized these efforts into four classes based on their approaches to hybrid modeling. It appears that, among these classes, PWM requires the most sophisticated approach, indicating that PWM modelers will need to face serious challenges and break new ground in this realm.


2007 ◽  
Vol 22 (01) ◽  
pp. 59-68 ◽  
Author(s):  
Ahmed S. Abou-Sayed ◽  
Karim S. Zaki ◽  
Gary Wang ◽  
Manoj Dnyandeo Sarfare ◽  
Martin H. Harris

2021 ◽  
Author(s):  
Pavel Dmitrievich Gladkov ◽  
Anastasiia Vladimirovna Zheltikova

Abstract As is known, fractured reservoirs compared to conventional reservoirs have such features as complex pore volume structure, high heterogeneity of the porosity and permeability properties etc. Apart from this, the productivity of a specific well is defined above all by the number of natural fractures penetrated by the wellbore and their properties. Development of fractured reservoirs is associated with a number of issues, one of which is related to uneven and accelerated water flooding due to water breakthrough through fractures to the wellbores, for this reason it becomes difficult to forecast the well performance. Under conditions of lack of information on the reservoir structure and aquifer activity, the 3D digital models of the field generated using the hydrodynamic simulators may feature insufficient predictive capability. However, forecasting of breakthroughs is important in terms of generating reliable HC and water production profiles and decision-making on reservoir management and field facilities for produced water treatment. Identification of possible sources of water flooding and planning of individual parameters of production well operation for the purpose of extending the water-free operation period play significant role in the development of these reservoirs. The purpose of this study is to describe the results of the hydrochemical monitoring to forecast the water flooding of the wells that penetrated a fractured reservoir on the example of a gas condensate field in Bolivia. The study contains data on the field development status and associated difficulties and uncertainties. The initial data were results of monthly analyses of the produced water and the water-gas ratio dynamics that were analyzed and compared to the data on the analogue fields. The data analysis demonstrated that first signs of water flooding for the wells of the field under study may be diagnosed through the monitoring of the produced water mineralization - the water-gas ratio (WGR) increase is preceded by the mineralization increase that may be observed approximately a month earlier. However, the data on the analogue fields shows that this period may be longer – from few months to two years. Thus, the hydrochemical method within integrated monitoring of development of a field with a fractured reservoir could be one of the efficient methods to timely adjust the well operation parameters and may extend the water-free period of its operation.


Sign in / Sign up

Export Citation Format

Share Document