Bridging the Gap Between Produced Water and Source Water: Modeling Water Management Economics to Identify Cost Saving Potential for Operators

Author(s):  
Tyler F. Hussey ◽  
David Burnett
Modelling ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 224-239
Author(s):  
Saeed P. Langarudi ◽  
Robert P. Sabie ◽  
Babak Bahaddin ◽  
Alexander G. Fernald

This paper explores the possibility and plausibility of developing a hybrid simulation method combining agent-based (AB) and system dynamics (SD) modeling to address the case study of produced water management (PWM). In southeastern New Mexico, the oil and gas industry generates large volumes of produced water, while at the same time, freshwater resources are scarce. Single-method models are unable to capture the dynamic impacts of PWM on the water budget at both the local and regional levels, hence the need for a more complex hybrid approach. We used the literature, information characterizing produced water in New Mexico, and our preliminary interviews with subject matter experts to develop this framework. We then conducted a systematic literature review to summarize state-of-the-art of hybrid modeling methodologies and techniques. Our research revealed that there is a small but growing volume of hybrid modeling research that could provide some foundational support for modelers interested in hybrid modeling approaches for complex natural resource management issues. We categorized these efforts into four classes based on their approaches to hybrid modeling. It appears that, among these classes, PWM requires the most sophisticated approach, indicating that PWM modelers will need to face serious challenges and break new ground in this realm.


2007 ◽  
Vol 22 (01) ◽  
pp. 59-68 ◽  
Author(s):  
Ahmed S. Abou-Sayed ◽  
Karim S. Zaki ◽  
Gary Wang ◽  
Manoj Dnyandeo Sarfare ◽  
Martin H. Harris

2021 ◽  
Author(s):  
Basil Ogbunude ◽  
Aniekan Obot ◽  
Abdul-Wahab Sa'ad ◽  
Sunday Maxwell-Amgbaduba ◽  
Etta Agbor ◽  
...  

Abstract Often, the production of oil and gas from underground reservoirs is accompanied by produced water which generally increases with time for a matured field, attributable to natural water encroachment, bottom water ingress, coning effect due to higher production rates, channeling effects, etc. This trend poses a production challenge with respect to increased OPEX cost and environmental considerations of treatment/handling and disposal of the produced water considering the late life performance characterized by low reward margins. Hence, produced water management solutions that reduce OPEX cost is key to extending the field life whilst ensuring a positive cash flow for the asset. SK field is located in the Swamp Area of the Niger Delta, with a capacity of 1.1Bcf gas plant supplying gas to a nearby LNG plant. Oil and gas production from the field is evacuated via the liquid and gas trunk lines respectively. Due to the incessant tampering with oil delivery lines and environmental impact of spillage, the condensate is spiked through the gas trunk line to the LNG plant. Largely, the water/effluent contained in the tank is evacuated through the liquid line. Based on the availability of the liquid line (ca. 40%-60%), the produced water is a constraint to gas production with estimated tank endurance time (ca. 8 days at 500MMscfd). This leads to creaming of gas production and indeed gas deferments due to produced water management, making it difficult to meet the contractual supply obligation to the LNG plant. An interim solution adopted was to barge the produced water to the oil and gas export terminal, with an associated OPEX cost of ca. US$2Mln/month. Upon further review of an alternate barging option, this option was considered too expensive, inefficient and unsustainable with inherent HSSE exposure. Therefore, a produced water re-injection project was scoped and executed as a viable alternative to produced water management. This option was supported by the Regulators as a preferred option for produced water management for the industry.


2007 ◽  
Vol 55 (5) ◽  
pp. 195-201 ◽  
Author(s):  
L.F. Moore ◽  
S.B. Watson

With an historical onus on reactive water treatment in North America, most taste and odour (T&O) outbreaks and other water quality issues have been unanticipated and difficult to control. Recent severe outbreaks of these drinking water issues have prompted wider advocacy of a more proactive “source-to-tap” approach, with greater focus on multidisciplinary partnerships among utilities, scientists and management/policy-makers. However, the practical application of this management model is faced with fragmented drainage basins, waterbodies and jurisdictions, and often requires a common issue such as T&O to initiate its development. This paper presents an example of a successful cooperative approach to drinking water management, the Ontario Water Works Research Consortium (OWWRC), consisting of the six major water utilities drawing water from Western Lake Ontario, scientists from the Canadian and Ontario governments and universities, and several other agencies. Established in 1999 following severe T&O outbreaks, the OWWRC has since operated as a highly effective model, employing a science-based approach to T&O management, supporting research on source-water and treatment issues, public outreach and utility surveys. The paper describes this partnership and summarises the results of an OWWRC T&O survey as one of the significant steps towards source-water characterisation undertaken by this cooperative.


Sign in / Sign up

Export Citation Format

Share Document