The Impact of Angular Unconformity at the Caprock Interface on CO2 Storage

Author(s):  
S.M. Shariatipour ◽  
G.E. Pickup ◽  
E.J. Mackay ◽  
H. Lever
2019 ◽  
Author(s):  
Autumn Haagsma ◽  
Andrew Burchwell ◽  
Amber Conner ◽  
Jackie Gerst ◽  
Wayne Goodman ◽  
...  

2011 ◽  
Vol 4 ◽  
pp. 4828-4834 ◽  
Author(s):  
D.J. Smith ◽  
D.J. Noy ◽  
S. Holloway ◽  
R.A. Chadwick

2021 ◽  
Author(s):  
Dale Douglas Erickson ◽  
Greg Metcalf

Abstract This paper discusses the development and deployment of a specialized online and offline integrated model to simulate the CO2 (Carbon Dioxide) Injection process. There is a very high level of CO2 in an LNG development and the CO2 must be removed in order to prepare the gas to be processed into LNG. To mitigate the global warming effects of this CO2, a large portion of the CO2 Rich Stream (98% purity) is injected back into a depleted oil field. To reduce costs, carbon steel flowlines are used but this introduces a risk of internal corrosion. The presence of free water increases the internal corrosion risk, and for this reason, a predictive model discussed in this paper is designed to help operations prevent free water dropout in the network in real time. A flow management tool (FMT) is used to monitor the current state of the system and helps look at the impact of future events (startup, shutdowns etc.). The tool models the flow of the CO2 rich stream from the outlet of the compressor trains, through the network pipeline and manifolds and then into the injection wells. System behavior during steady state and transient operation is captured and analyzed to check water content and the balance of trace chemicals along with temperature and pressure throughout the network helping operators estimate corrosion rates and monitor the overall integrity of the system. The system has been running online for 24/7 for 2 years. The model has been able to match events like startup/shutdown, cooldowns and blowdowns. During these events the prediction of temperature/pressure at several locations in the field matches measured data. The model is then able to forecasts events into the future to help operations plan how they will operate the field. The tool uses a specialized thermodynamic model to predict the dropout of water in the near critical region of CO2 mixtures which includes various impurities. The model is designed to model startup and shutdown as the CO2 mixture moves across the phase boundary from liquid to gas or gas to liquid during these operations.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-21
Author(s):  
Zhaoxu Mi ◽  
Fugang Wang ◽  
Zhijie Yang ◽  
Xufeng Li ◽  
Yujie Diao ◽  
...  

CO2 geological storage in deep saline aquifers is an effective way to reduce CO2 emissions. The injection of CO2 inevitably causes a significant pressure increase in reservoirs. When there exist faults which cut through a deep reservoir and shallow aquifer system, there is a risk of the shallow aquifer being impacted by the changes in reservoir hydrodynamic fields. In this paper, a radial model and a 3D model are established by TOUGH2-ECO2N for the reservoir system in the CO2 geological storage demonstration site in the Junggar Basin to analyze the impact of the CO2 injection on the deep reservoir pressure field and the possible influence on the surrounding shallow groundwater sources. According to the results, the influence of CO2 injection on the reservoir pressure field in different periods and different numbers of well is analyzed. The result shows that the number of injection wells has a significant impact on the reservoir pressure field changes. The greater the number of injection wells is, the greater the pressure field changes. However, after the cessation of CO2 injection, the number of injection wells has little impact on the reservoir pressure recovery time. Under the geological conditions of the site and the constant injection pressure, although the CO2 injection has a significant influence on the pressure field in the deep reservoir, the impact on the shallow groundwater source area is minimal and can be neglected and the existing shallow groundwater sources are safe in the given project scenarios.


Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. WA1-WA13 ◽  
Author(s):  
Lisa A. N. Roach ◽  
Donald J. White ◽  
Brian Roberts

Two 3D time-lapse seismic surveys were acquired in 2012 and 2013 at the Aquistore [Formula: see text] storage site prior to the start of [Formula: see text] injection. Using these surveys, we determined the background time-lapse noise at the site and assessed the feasibility of using a sparse areal permanent receiver array as a monitoring tool. Applying a standard processing sequence to these data, we adequately imaged the reservoir at 3150–3350 m depth. Evaluation of the impact of each processing step on the repeatability revealed a general monotonic increase in similarity between the data sets as a function of processing. The prestack processing sequence reduced the normalized root mean squared difference (nrms) from 1.13 between the raw stacks to 0.13 after poststack time migration. The postmigration cross-equalization sequence further reduced the global nrms to 0.07. A simulation of the changes in seismic response due to a range of [Formula: see text] injection scenarios suggested that [Formula: see text] was detectable within the reservoir at the Aquistore site provided that zones of greater thickness than 6–13 m have reached [Formula: see text] saturations of greater than 5%.


2017 ◽  
Vol 114 ◽  
pp. 3322-3334 ◽  
Author(s):  
Jerome Corvisier ◽  
Martha Hajiw ◽  
Elise El Ahmar ◽  
Christophe Coquelet ◽  
Jérôme Sterpenich ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Adrià Ramos ◽  
José F. Mediato ◽  
Raúl Pérez-López ◽  
Miguel A. Rodríguez-Pascua ◽  
Roberto Martínez-Orío ◽  
...  

<p>The long-term managing from the geological hazard point of view of the Hontomín onshore pilot-plant for CO<sub>2 </sub>storage, located in Spain and recognized as the first and only key-test facility in Europe, is one of the main objectives stated in the ENOS European project. This project is led and funded by the European Network of Excellence on the Geological Storage of CO<sub>2</sub> (CO<sub>2</sub>GeoNet).</p><p>The complex geological emplacement of the Hontomín Carbon capture and storage plant is considered rather relevant to analyse the impact of fracturing and both local and regional strain field on the reservoir parameters. The reservoir of Hontomín pilot-plant is formed by highly fractured Middle Jurassic dolomites with associated secondary porosity. This parameter is one of the main concerns when managing CO<sub>2</sub> storage and monitoring.</p><p>In order to characterize the fracture pattern and its implications on a proper CO<sub>2</sub> monitoring, we characterized the surface structural elements through the study area and their relationship with fractures affecting the reservoir porosity. The methodology followed in this work is mainly based on detailed geological mapping (field work complimented with orthophoto analysis), adding missing information from previous works. This analysis does not increase the cost for long-term monitoring, given that they are low-cost and the results are acquired in a few months.</p><p>The main structural trend in the study area, concerning faults with a wide range of displacement and metric to decametric folds, follows a regional E-W orientation. On the other hand, fractures show two main sets of trends, from NW-SE to NE-SW.</p><p>This fracturing pattern, considered as a conjugate fracture system, corresponds to the tectonic stress recorded in both Mesozoic and Cenozoic sedimentary successions where the Hontomín pilot-plant is placed. Riddle faults formed from a nearby regional right-lateral strike slip fault (Ubierna Fault) are the responsible structures for the fracture system affecting the area and the reservoir. Moreover, this fracturing pattern is in agreement with local to regional active tectonic field from Cenozoic times to present-day, when the Ubierna Fault recorded its maximum right-lateral displacement (15 km).</p><p>Secondary porosity within the reservoir can be produced from this fracture pattern, highly increasing the permeable migration paths for CO<sub>2</sub> migration after the injection. Therefore, we state that a combination between fracture analysis and structural and tectonic study, should be considered as mandatory in the monitoring phases of the CO<sub>2</sub> plume, during and after injection operations.</p>


Sign in / Sign up

Export Citation Format

Share Document