Asphaltene Deposition during CO2 Injection in an Iranian Carbonate Reservoir – An Experimental and Simulation Approach

Author(s):  
S. H. Mirhaj ◽  
S. A. Mirhaj
2020 ◽  
Author(s):  
Bilal Amjad ◽  
Oloruntoba Ogunsanwo ◽  
Mustafa Bawazir ◽  
Nabil Batita ◽  
Mohammed Siddiqui

SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Xin Su ◽  
Rouzbeh G. Moghanloo ◽  
Minhui Qi ◽  
Xiang-an Yue

Summary Formation damage mechanisms in general lower the quality of the near wellbore, often manifested in the form of permeability reduction, and thus reducing the productivity of production wells and injectivity of injection wells. Asphaltene deposition, as one of the important causes, can trigger serious formation damage issues and significantly restrict the production capacity of oil wells. Several mechanisms acting simultaneously contribute to the complexity associated with prediction of permeability impairment owing to asphaltene deposition; thus, integration of modeling efforts for asphaltene aggregation and deposition mechanisms seems inevitable for improved predictability. In this work, an integrated simulation approach is proposed to predict permeability impairment in porous medium. The proposed approach is novel because it integrates various mathematical models to study permeability impairment considering porosity reduction, particle aggregation, and pore connectivity loss caused by asphaltene deposition. To improve the accuracy of simulation results, porous media is considered as a bundle (different size) of capillary tubes with dynamic interconnectivity. The total volume change of interconnected tubes will directly represent permeability reduction realized in porous media. The prediction of asphaltene deposition in porous media is improved in this paper via integration of the particle aggregation model into calculation. The simulation results were verified by comparing with existing experimental data sets. After that, a sensitivity analysis was performed to study parameters that affect permeability impairment. The simulation results show that our permeability impairment model—considering asphaltene deposition, aggregation, and pore connectivity loss—can accurately reproduce the experimental results with fewer fitting or empirical parameters needed. The sensitivity analysis shows that longer aggregation time, higher flow velocity, and bigger precipitation concentration will lead to a faster permeability reduction. The findings of this study can help provide better understanding of the permeability impairment caused by asphaltene deposition and pore blockage, which provides useful insights for prediction of production performance of oil wells.


2021 ◽  
Author(s):  
Mahesh S. Picha ◽  
M. Azuan B. Abu Bakar ◽  
Parimal A. Patil ◽  
Faiz A. Abu Bakar ◽  
Debasis P. Das ◽  
...  

Abstract Oil & Gas Operators are focusing on zero carbon emission to comply with government's changing rules and regulations, which play an important role in the encouragement of carbon capture initiatives. This paper aims to give insights on the world's first offshore CCS project in carbonate reservoir, where wells will be drilled to inject CO2, and store produced CO2 from contaminated fields. To safeguard the storage containment, the integrity of all wells needs to be scrutinized. Development wells in the identified depleted gas field are more than 40 years old and were not designed with consideration of high CO2 concentration in the reservoir. In consequence, the possibility of well leakage due to accelerated corrosion channeling and cracks, along the wellbore cannot be ignored and require careful evaluation. Rigorous process has been adopted in assessing the feasibility for converting existing gas producers into CO2 injectors. The required defined basis of designs for gas producer and CO2 injection wells differs in a great extent and this governs the re-usability of wells for CO2 injection or necessity to be abandoned. Three (3) new CO2 injectors with fat to slim design approach, corrosion resistant alloy (CRA) material and CO2 resistant cement are designed in view to achieve lifecycle integrity. Optimum angle of 53 deg and maintaining the injection pressure of 50 bar at 90 MSCFD rate is required for the injection of supercritical CO2 for 20 years. During well execution, challenges such as anti-collision risk, total loss scenarios while drilling in Carbonate reservoir need to be addressed before execution. The completion design is also focusing on having minimal number of completion jewelries to reduce pressure differential and potential leak paths from tubing hangar down to the end of lower completion. The selection of downhole safety valve (TRSV) type is of high importance to accommodate CO2 phase attributes at different pressure/temperature. Fiber Optic is included for monitoring the migration of CO2 plume by acquiring seismic survey and for well integrity by analyzing DAS/DTS data.


2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Zoann Low ◽  
Parimal Arjun Patil ◽  
Debasis Priyadarshan Das ◽  
Prasanna Chidambaram ◽  
...  

Abstract Monitoring of CO2 plume migration in a depleted carbonate reservoir is challenging and demand comprehensive and trailblazing monitoring technologies. 4D time-lapse seismic exhibits the migration of CO2 plume within geological storage but in the area affected by gas chimney due to poor signal-to-noise ratio (SNR), uncertainty in identifying and interpretation of CO2 plume gets exaggerated. High resolution 3D vertical seismic profile (VSP) survey using distributed acoustic sensor (DAS) technology fulfil the objective of obtaining the detailed subsurface image which include CO2 plume migration, reservoir architecture, sub-seismic faults and fracture networks as well as the caprock. Integration of quantitative geophysics and dynamic simulation with illumination modelling dignify the capabilities of 3D DAS-VSP for CO2 plume migration monitoring. The storage site has been studied in detailed and an integrated coupled dynamic simulation were performed and results were integrated with seismic forward modeling to demonstrate the CO2 plume migration with in reservoir and its impact on seismic amplitude. 3D VSP illumination modelling was carried out by integrating reservoir and overburden interpretations, acoustic logs and seismic velocity to illustrate the subsurface coverage area at top of reservoir. Several acquisition survey geometries were simulated based on different source carpet size for effective surface source contribution for subsurface illumination and results were analyzed to design the 3D VSP survey for early CO2 plume migration monitoring. The illumination simulation was integrated with dynamic simulation for fullfield CO2 plume migration monitoring with 3D DAS-VSP by incorporating Pseudo wells illumination analysis. Results of integrated coupled dynamic simulation and 4D seismic feasibility were analyzed for selection of best well location to deploy the multi fiber optic sensor system (M-FOSS) technology. Amplitude response of synthetic AVO (amplitude vs offsets) gathers at the top of carbonate reservoir were analyzed for near, mid and far angle stacks with respect to pre-production as well as pre-injection reservoir conditions. Observed promising results of distinguishable 25-30% of CO2 saturation in depleted reservoir from 4D time-lapse seismic envisage the application of 3D DAS-VSP acquisition. The source patch analysis of 3D VSP illumination modelling results indicate that a source carpet of 6km×6km would be cos-effectively sufficient to produce a maximum of approximately 2km in diameter subsurface illumination at the top of the reservoir. The Pseudo wells illumination analysis results show that current planned injection wells would probably able to monitor early CO2 injection but for the fullfield monitoring additional monitoring wells or a hybrid survey of VSP and surface seismic would be required. The integrated modeling approach ensures that 4D Seismic in subsurface CO2 plume monitoring is robust. Monitoring pressure build-ups from 3D DAS-VSP will reduce the associated risks.


2022 ◽  
Vol 15 (4) ◽  
pp. 139-149
Author(s):  
F. G. A. Pereira ◽  
V. E. Botechia ◽  
D. J. Schiozer

Pre-salt reservoirs are among the most important discoveries in recent decades due to the large quantities of oil in them. However, high levels of uncertainties related to its large gas/CO2 production prompt a more complex gas/CO2 management, including the use of alternating water and gas/CO2 injection (WAG) as a recovery mechanism to increase oil recovery from the field. The purpose of this work is to develop a methodology to manage cycle sizes of the WAG/CO2, and analyze the impact of other variables related to the management of producing wells during the process. The methodology was applied to a benchmark synthetic reservoir model with pre-salt characteristics. We used five approaches to evaluate the optimum cycle size under study, also assessing the impact of the management of producing wells: (A) without closing producers due to gas-oil ratio (GOR) limit; (B) GOR limit fixed at a fixed value (1600 m³/m³) for all wells; (C) GOR limit optimized per well; (D) joint optimization between GOR limit values of producers and WAG cycles; and (E) optimization of the cycle size per injector well with an optimized GOR limit. The results showed that the optimum cycle size depends on the management of the producers. Leaving all production wells open until the end of the field's life (without closing based on the GOR limit) or controlling the wells in a more restricted manner (with closing based on the GOR limit), led to significant variation of the results (optimal size of the WAG/CO2 cycles). Our study, therefore, demonstrates that the optimum cycle size depends on other control variables and can change significantly due to these variables. This work presents a study that aimed to manage the WAG-CO2 injection cycle size by optimizing the life cycle control variables to obtain better economic performance within the premises already established, such as the total reinjection of gas/CO2 produced, also analyzing the impact of other variables (management of producing wells) along with the WAG-CO2 cycles.


2020 ◽  
Vol 143 (8) ◽  
Author(s):  
Peng Wang ◽  
Fenglan Zhao ◽  
Shijun Huang ◽  
Meng Zhang ◽  
Hairu Feng ◽  
...  

Abstract Excessive water production is a common matter that seriously affects production efficiency during the development of edge-water fault-block reservoirs. Gas huff-n-puff is an effective water shutoff technology that has the characteristics of small injection volume, no interwell connectivity impact, and minor gas channeling. However, gas injection can destroy the stability of the asphaltene to induce asphaltene deposition. In this article, the laboratory experiment had been conducted to investigate the effect of injection ratio and injection sequence on oil increment and water cut control for gas mixture huff-n-puff. Experimental results indicated that the effect of N2 huff-n-puff on water cut control was the most obvious, while CO2 huff-n-puff had the best performance on oil increment. Oil increment and water cut control of gas mixture huff-n-puff with CO2 injected in advance were obviously better than that of N2 injection preferentially. Subsequently, PVTsim Nova was utilized to investigate whether reducing CO2 injection volume can inhibit asphaltene deposition and predict the possibility of asphaltene deposition at reservoir conditions. Simulation results demonstrated that the asphaltenes were easily deposited with CO2 injection while N2 injection will be unlikely to induce asphaltene deposition. Asphaltene deposition pressure envelope can qualitatively analyze the possibility of asphaltene deposition and provide a reference for screening the appropriate gas injection ratio based on giving full play to the synergistic effect of CO2 and N2. In this study, 7:3 is selected as the optimum injection ratio considering the synergistic effect and the possibility of asphaltene deposition.


Sign in / Sign up

Export Citation Format

Share Document