Compute and Data Intensive Platforms Designed for Industry and Productivity

Author(s):  
E. L. Goh
Keyword(s):  
2007 ◽  
Vol 2 (1) ◽  
Author(s):  
M. Hochedlinger ◽  
W. Sprung ◽  
H. Kainz ◽  
K. König

The simulation of combined sewer overflow volumes and loads is important for the assessment of the overflow and overflow load to the receiving water to predict the hydraulic or the pollution impact. Hydrodynamic models are very data-intensive and time-consuming for long-term quality modelling. Hence, for long-term modelling, hydrological models are used to predict the storm flow in a fast way. However, in most cases, a constant rain intensity is used as load for the simulation, but in practice even for small catchments rain occurs in rain cells, which are not constant over the whole catchment area. This paper presents the results of quality modelling considering moving storms depending on the rain cell velocity and its moving direction. Additionally, tipping bucket gauge failures and different corrections are also taken into account. The results evidence the importance of these considerations for precipitation due the effects on overflow load and show the difference up to 28% of corrected and uncorrected data and of moving rain cells instead of constant raining intensities.


Author(s):  
Simab Hasan Rizvi

In Today's age of Tetra Scale computing, the application has become more data intensive than ever. The increased data volume from applications, in now tackling larger and larger problems, and has fuelled the need for efficient management of this data. In this paper, a technique called Content Addressable Storage or CAS, for managing large volume of data is evaluated. This evaluation focuses on the benefits and demerits of using CAS it focuses, i) improved application performance via lockless and lightweight synchronization ofaccess to shared storage data, ii) improved cache performance, iii) increase in storage capacity and, iv) increase network bandwidth. The presented design of a CAS-Based file store significantly improves the storage performance that provides lightweight lock less user defined consistency semantics. As a result, this file system shows a 28% increase in read bandwidth and 13% increase in write bandwidth, over a popular file system in common use. In this paper the potential benefits of using CAS for a virtual machine are estimated. The study also explains mobility application for active use and public deployment.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1778
Author(s):  
Binhao He ◽  
Meiting Xue ◽  
Shubiao Liu ◽  
Wei Luo

As one of the most important operations in relational databases, the join is data-intensive and time-consuming. Thus, offloading this operation using field-programmable gate arrays (FPGAs) has attracted much interest and has been broadly researched in recent years. However, the available SRAM-based join architectures are often resource-intensive, power-consuming, or low-throughput. Besides, a lower match rate does not lead to a shorter operation time. To address these issues, a Bloom filter (BF)-based parallel join architecture is presented in this paper. This architecture first leverages the BF to discard the tuples that are not in the join result and classifies the remaining tuples into different channels. Second, a binary search tree is used to reduce the number of comparisons. The proposed method was implemented on a Xilinx FPGA, and the experimental results show that under a match rate of 50%, our architecture achieved a high join throughput of 145.8 million tuples per second and a maximum acceleration factor of 2.3 compared to the existing SRAM-based join architectures.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1069
Author(s):  
Shibbir Ahmed ◽  
Baijing Qiu ◽  
Fiaz Ahmad ◽  
Chun-Wei Kong ◽  
Huang Xin

Over the last decade, Unmanned Aerial Vehicles (UAVs), also known as drones, have been broadly utilized in various agricultural fields, such as crop management, crop monitoring, seed sowing, and pesticide spraying. Nonetheless, autonomy is still a crucial limitation faced by the Internet of Things (IoT) UAV systems, especially when used as sprayer UAVs, where data needs to be captured and preprocessed for robust real-time obstacle detection and collision avoidance. Moreover, because of the objective and operational difference between general UAVs and sprayer UAVs, not every obstacle detection and collision avoidance method will be sufficient for sprayer UAVs. In this regard, this article seeks to review the most relevant developments on all correlated branches of the obstacle avoidance scenarios for agricultural sprayer UAVs, including a UAV sprayer’s structural details. Furthermore, the most relevant open challenges for current UAV sprayer solutions are enumerated, thus paving the way for future researchers to define a roadmap for devising new-generation, affordable autonomous sprayer UAV solutions. Agricultural UAV sprayers require data-intensive algorithms for the processing of the images acquired, and expertise in the field of autonomous flight is usually needed. The present study concludes that UAV sprayers are still facing obstacle detection challenges due to their dynamic operating and loading conditions.


2021 ◽  
Vol 8 (1) ◽  
pp. 205395172199603
Author(s):  
Nathaniel Tkacz ◽  
Mário Henrique da Mata Martins ◽  
João Porto de Albuquerque ◽  
Flávio Horita ◽  
Giovanni Dolif Neto

This article adapts the ethnographic medium of the diary to develop a method for studying data and related data practices. The article focuses on the creation of one data diary, developed iteratively over three years in the context of a national centre for monitoring disasters and natural hazards in Brazil (Cemaden). We describe four points of focus involved in the creation of a data diary – spaces, interfaces, types and situations – before reflecting on the value of this method. We suggest data diaries (1) are able to capture the informal dimension of data-intensive organisations; (2) enable empirical analysis of the specific ways that data intervene in the unfolding of situations; and (3) as a document, data diaries can foster interdisciplinary and inter-expert dialogue by bridging different ways of knowing data.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1709
Author(s):  
Agbotiname Lucky Imoize ◽  
Oluwadara Adedeji ◽  
Nistha Tandiya ◽  
Sachin Shetty

The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communication.


Sign in / Sign up

Export Citation Format

Share Document