Remediation Investigation of a Failing Retaining Wall Structure

Author(s):  
A.J. Verweerd ◽  
S. Williams ◽  
P. Arnold
Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 746
Author(s):  
Xinquan Wang ◽  
Cong Zhu ◽  
Hongguo Diao ◽  
Yingjie Ning

The retaining wall is a common slope protection structure. To tackle the current lack of sustainable and highly prefabricated retaining walls, an environmentally friendly prefabricated ecological grid retaining wall with high construction efficiency has been developed. Due to the asymmetrical condition of the project considered in this paper, the designed prefabricated ecological grid retaining wall was divided into the excavation section and the filling section. By utilizing the ABAQUS finite element software, the stress and deformation characteristics of the retaining wall columns, soil, anchor rods, and inclined shelves in an excavation section, and the force and deformation relationships of the columns, rivets, and inclined shelves in three working conditions in a filling section were studied. The study results imply that the anchor rods may affect the columns in the excavation section and the stress at the column back changes in an M-shape with height. Moreover, the peak appears at the contact point between the column and the anchor rod. The displacement of the column increases slowly along with the height, and the column rotates at its bottom. In the excavation section, the stress of the anchor rod undergoes a change at the junction of the structure. The inclined shelf is an open structure and is very different from the retaining plate structure of traditional pile-slab retaining walls. Its stress distribution follows a repeated U-shaped curve, which is inconsistent with the trend of the traditional soil arching effect between piles, which increases first and then decreases. For the retaining wall structure in the filling section, the numerical simulated vehicle load gives essentially consistent results with the effects of the equivalent filling on the concrete column.


2013 ◽  
Vol 275-277 ◽  
pp. 1154-1157
Author(s):  
Yun Lian Song ◽  
Si Li ◽  
Jian Ran Cao

Stability problem of gravity retaining wall structure was researched, and a simplified formula of the active earth pressure Ea was turned out for the convenience of the program design. The anti-slide safety factor K0 and anti-overturning safety factor Kc were derived based on different positions of slip plane of retaining wall. This work is the basis of the reliability calculating and program design, for these formulas must be used in anti-slide and anti-overturning safety failure mode in program compiling. On the basis of the known parameters such as wall type, wall dimensions, material parameters, external load, and so on, the program can automatically calculate K0 and Kc, their corresponding failure probability Pf and reliability index β can easily be calculated in later analysis. The research content provide a convenient calculation method, which is used to calculate the Ea and K0 and Kc and Pf and β of the actual retaining walls engineering.


Data ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 42 ◽  
Author(s):  
Renee Oats ◽  
Rudiger Escobar-Wolf ◽  
Thomas Oommen

Structure from Motion (SfM)/Photogrammetry is a powerful mapping tool in extracting three-dimensional (3D) models from photographs. This method has been applied to a range of applications, including monitoring of infrastructure systems. This technique could potentially become a substitute, or at least a complement, for costlier approaches such as laser scanning for infrastructure monitoring. This study expands on previous investigations, which utilize photogrammetry point cloud data to measure failure mode behavior of a retaining wall model, emphasizing further robust spatial testing. In this study, a comparison of two commonly used photogrammetry software packages was implemented to assess the computing performance of the method and the significance of control points in this approach. The impact of control point selection, as part of the photogrammetric modeling processes, was also evaluated. Comparisons between the two software tools reveal similar performances in capturing quantitative changes of a retaining wall structure. Results also demonstrate that increasing the number of control points above a certain number does not, necessarily, increase 3D modeling accuracies, but, in some cases, their spatial distribution can be more critical. Furthermore, errors in model reproducibility, when compared with total station measurements, were found to be spatially correlated with the arrangement of control points.


Author(s):  
Valentana Ardian Tarigan ◽  
Immanuel Panusunan Tua Panggabean

The construction of cantilever retaining wall uses reinforcement as part of the retaining wall’ structure. Reinforcement of the construction of the Retaining Wall is carried out on construction if there is a need for additional reinforcement on the structure or carrying out reconstruction on the structure of the retaining wall. Research on the use of starter rebar uses chemical epoxy, which is used to reconstruct the retaining walls. Soil investigation is carried out because the soil in this structure acts as a load, then this soil parameter is calculated as a lateral force on the wall that makes the rolling moment, and sliding. The land load also acts as a counter weight behind the wall. The study of the use of back reinforcement on the structure of cantilever type retaining wall uses D19-170 as the main reinforcement in the tensile area and D16-170 in the compressed area. Reinforcement for used D13-170.


2019 ◽  
Vol 2019 ◽  
pp. 1-22
Author(s):  
Qian Xu

To diagnose damages within the retaining wall structure, the Hilbert marginal energy spectrum was acquired via the Hilbert–Huang transformation of virtual impulse response functions of responses to the retaining wall under ambient excitations. Based on the Hilbert marginal energy spectrum, the Hilbert damage feature vector spectrum was created. On the basis of the damage feature vector spectrum, a damage identification index was proposed. Based on the damage feature vector spectrum and damage index, the damage state of the retaining wall was detected by the damage feature vector spectrum, damage locations of the wall were diagnosed by the damage index trend surface, and the damage intensity of the wall was identified by the quantitative relationship between the damage index and damage intensity. Based on this, a damage diagnosis method for retaining wall structures was proposed. To verify the feasibility and validity of the damage diagnosis method, both model tests and field tests on a pile plate retaining wall are performed under ambient excitations. Test results show that the damage state of the wall can be detected sensitively, damage locations can be diagnosed validly, and damage intensity can be identified quantitatively via this damage diagnosis method.


Author(s):  
Akram Y. Abu-Odeh ◽  
Kang-Mi Kim

Mechanically stabilized earth (MSE) retaining walls are used to provide roadway elevation for bridge approaches, underpass frontage roads, and other roadway elevation applications. Vehicular traffic may exist on the high (fill) side of the MSE retaining wall, the low side, or both sides. For traffic on the high side, a conventional traffic barrier might be placed on or near the top of the wall and mounted on a moment slab or a bridge deck. For traffic on the low side, a conventional traffic barrier might be installed adjacent to the wall or the wall itself may serve as the traffic barrier. Typical MSE wall panels are not designed to resist vehicle impacts. Therefore, structural damage to the wall panels and the earth fill would require complicated and expensive repairs. A simple reinforced-concrete crash wall constructed in front of the MSE wall panels could significantly reduce damage to the panels. It might prove practical to implement such a design to reduce costly repairs to the MSE wall structure. In this paper, LS-DYNA finite element analysis code was used to model and analyze a sacrificial crash wall design to determine its effectiveness in protecting an MSE retaining wall. Based on the LS-DYNA simulations, a crash wall that is 8 in. (0.2 m) thick is considered to be an adequate design to reduce damage to the MSE wall.


2021 ◽  
Vol 331 ◽  
pp. 05013
Author(s):  
Deni Irda Mazni ◽  
Abdul Hakam ◽  
Jafril Tanjung ◽  
Febrin Anas Ismail

A concrete block retaining wall is supported by its weight. This block retaining wall structure has some advantages, including lower construction costs, a water-permeable construction that produces less water pressure behind the wall, and a more flexible construction because it can follow the ground's contours. Rankine's theory is usually used to design this block retaining wall. According to this theory, the failure pattern behind the wall forms an angle of 450 + • /2 with the horizontal plane. The laboratory tests indicate that the pattern of failure or the pattern of sand movement behind the wall is similar to the letter S. From the sandy soil of failure pattern curve, look for a functional equation approximating the pattern. The equation of the function obtained is an equation of the third-order function. An analysis of the sliding, overturning, and overall stability block retaining wall is based on this equation of the cube function. Analysis for overall stability using the method of slices, dividing the failure area by several slices. These function equation order three is needed to get the area and length failure.


Sign in / Sign up

Export Citation Format

Share Document