Sliding Stability of Dry Masonry Block Retaining Wall Structure with a Resistance Plate

Author(s):  
Akihiro Hashimoto
Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 746
Author(s):  
Xinquan Wang ◽  
Cong Zhu ◽  
Hongguo Diao ◽  
Yingjie Ning

The retaining wall is a common slope protection structure. To tackle the current lack of sustainable and highly prefabricated retaining walls, an environmentally friendly prefabricated ecological grid retaining wall with high construction efficiency has been developed. Due to the asymmetrical condition of the project considered in this paper, the designed prefabricated ecological grid retaining wall was divided into the excavation section and the filling section. By utilizing the ABAQUS finite element software, the stress and deformation characteristics of the retaining wall columns, soil, anchor rods, and inclined shelves in an excavation section, and the force and deformation relationships of the columns, rivets, and inclined shelves in three working conditions in a filling section were studied. The study results imply that the anchor rods may affect the columns in the excavation section and the stress at the column back changes in an M-shape with height. Moreover, the peak appears at the contact point between the column and the anchor rod. The displacement of the column increases slowly along with the height, and the column rotates at its bottom. In the excavation section, the stress of the anchor rod undergoes a change at the junction of the structure. The inclined shelf is an open structure and is very different from the retaining plate structure of traditional pile-slab retaining walls. Its stress distribution follows a repeated U-shaped curve, which is inconsistent with the trend of the traditional soil arching effect between piles, which increases first and then decreases. For the retaining wall structure in the filling section, the numerical simulated vehicle load gives essentially consistent results with the effects of the equivalent filling on the concrete column.


2010 ◽  
Vol 04 (04) ◽  
pp. 387-400 ◽  
Author(s):  
DEEPANKAR CHOUDHURY ◽  
SYED MOHD AHMAD

The paper presents a methodology for seismic design of rigid watferfront-retaining wall and proposes simple design factors for the sliding stability under seismic condition. Conventional pseudostatic approach has been used for the calculation of the seismic forces, while for the calculation of the hydrodynamic pressure, Westergaard's approach has been used. In addition, the hydrodynamic force has been considered from both the upstream and downstream sides of the waterfront-retaining wall under free water condition of the backfill. Simplified expression for the calculation of the equivalent weight of the wall which would be needed to maintain sliding stability is presented. It has been observed that the presence of water both on the upstream and downstream sides of the wall has serious destabilizing effect on the stability of the wall. It is noticed that as the height of the water inside the backfill increased from 0.00 to a height equal to the height of the wall itself, i.e., the backfill is fully submerged, the weight of the wall needed for the later case is around 3 times more than what would be needed for the former case. Similar observations were also made by varying other parameters like the horizontal and vertical seismic acceleration coefficients, height of the water on the upstream side of the wall, and soil and wall friction angles. The pore pressure ratio and the inclination of the ground, however, did not have significant effect on the results. Due to nonavailability of the results of similar kind in literature, an exact comparison for the present results could not be made. Only partial comparison of the present results is made with an already existing methodology for the dry backfill case only, in which no presence of water has been considered on the other side of the wall. This comparison shows a good agreement with the present results. The proposed pseudostatic design factors for the case of wet backfill with the presence of water on both sides of the wall are claimed to be unique.


2013 ◽  
Vol 275-277 ◽  
pp. 1154-1157
Author(s):  
Yun Lian Song ◽  
Si Li ◽  
Jian Ran Cao

Stability problem of gravity retaining wall structure was researched, and a simplified formula of the active earth pressure Ea was turned out for the convenience of the program design. The anti-slide safety factor K0 and anti-overturning safety factor Kc were derived based on different positions of slip plane of retaining wall. This work is the basis of the reliability calculating and program design, for these formulas must be used in anti-slide and anti-overturning safety failure mode in program compiling. On the basis of the known parameters such as wall type, wall dimensions, material parameters, external load, and so on, the program can automatically calculate K0 and Kc, their corresponding failure probability Pf and reliability index β can easily be calculated in later analysis. The research content provide a convenient calculation method, which is used to calculate the Ea and K0 and Kc and Pf and β of the actual retaining walls engineering.


Data ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 42 ◽  
Author(s):  
Renee Oats ◽  
Rudiger Escobar-Wolf ◽  
Thomas Oommen

Structure from Motion (SfM)/Photogrammetry is a powerful mapping tool in extracting three-dimensional (3D) models from photographs. This method has been applied to a range of applications, including monitoring of infrastructure systems. This technique could potentially become a substitute, or at least a complement, for costlier approaches such as laser scanning for infrastructure monitoring. This study expands on previous investigations, which utilize photogrammetry point cloud data to measure failure mode behavior of a retaining wall model, emphasizing further robust spatial testing. In this study, a comparison of two commonly used photogrammetry software packages was implemented to assess the computing performance of the method and the significance of control points in this approach. The impact of control point selection, as part of the photogrammetric modeling processes, was also evaluated. Comparisons between the two software tools reveal similar performances in capturing quantitative changes of a retaining wall structure. Results also demonstrate that increasing the number of control points above a certain number does not, necessarily, increase 3D modeling accuracies, but, in some cases, their spatial distribution can be more critical. Furthermore, errors in model reproducibility, when compared with total station measurements, were found to be spatially correlated with the arrangement of control points.


2020 ◽  
Vol 156 ◽  
pp. 02005
Author(s):  
Hanafi ◽  
Hendri Gusti Putra ◽  
Andriani

In August 2010, there was a landslide on the down-slope of national road section at Km 31+800 Lubuk Selasih – Padang City Border. In order to prevent further damage, it was necessary to make an immediate repair by constructing a gabion retaining wall. Since this repair was so urgent, physical and mechanical soil parameters for the stability analysis were determined from literature data. The stability analysis considered dangers of overturning, sliding, and soil bearing capacity. For the sliding stability analysis, the value for friction considered only the interaction between the soil and the base of the retaining wall, with the assumption that the contact area was equal to the total area of the entire base of the retaining wall. After the construction was completed, sliding failure occured due to pressure from the backfill embankment. This research performs a reanalysis of the retaining wall stability using soil and gabion parameters determined from field investigation and laboratory testing. In this reanalysis the friction contact area was assumed to be between the soil and the wire mesh of retaining wall. With these parameters and assumption, the main cause of sliding failure became clear, indicating that this approach increased the accuracy of stability analysis for gabion retaining walls.


2019 ◽  
Vol 9 (3) ◽  
pp. 211-217 ◽  
Author(s):  
K. Fan ◽  
S. H. Liu ◽  
Y. P. Cheng ◽  
Y. Wang

Author(s):  
Valentana Ardian Tarigan ◽  
Immanuel Panusunan Tua Panggabean

The construction of cantilever retaining wall uses reinforcement as part of the retaining wall’ structure. Reinforcement of the construction of the Retaining Wall is carried out on construction if there is a need for additional reinforcement on the structure or carrying out reconstruction on the structure of the retaining wall. Research on the use of starter rebar uses chemical epoxy, which is used to reconstruct the retaining walls. Soil investigation is carried out because the soil in this structure acts as a load, then this soil parameter is calculated as a lateral force on the wall that makes the rolling moment, and sliding. The land load also acts as a counter weight behind the wall. The study of the use of back reinforcement on the structure of cantilever type retaining wall uses D19-170 as the main reinforcement in the tensile area and D16-170 in the compressed area. Reinforcement for used D13-170.


Sign in / Sign up

Export Citation Format

Share Document