Thermal-Gas-Chemical Treatment of Shale Reservoirs by Use of Advanced Mini-Hydraulic Fracturing Equipment

Author(s):  
M. Rezaei Koochi ◽  
A. Kemalov
2016 ◽  
Author(s):  
Jihye Kim ◽  
Ahmed M. Gomaa ◽  
Scott G. Nelson ◽  
Harold G. Hudson

2021 ◽  
pp. 014459872098153
Author(s):  
Yanzhi Hu ◽  
Xiao Li ◽  
Zhaobin Zhang ◽  
Jianming He ◽  
Guanfang Li

Hydraulic fracturing is one of the most important technologies for shale gas production. Complex hydraulic fracture networks can be stimulated in shale reservoirs due to the existence of numerous natural fractures. The prediction of the complex fracture network remains a difficult and challenging problem. This paper presents a fully coupled hydromechanical model for complex hydraulic fracture network propagation based on the discontinuous deformation analysis (DDA) method. In the proposed model, the fracture propagation and rock mass deformation are simulated under the framework of DDA, and the fluid flow within fractures is simulated using lubrication theory. In particular, the natural fracture network is considered by using the discrete fracture network (DFN) model. The proposed model is widely verified against several analytical and experimental results. All the numerical results show good agreement. Then, this model is applied to field-scale modeling of hydraulic fracturing in naturally fractured shale reservoirs. The simulation results show that the proposed model can capture the evolution process of complex hydraulic fracture networks. This work offers a feasible numerical tool for investigating hydraulic fracturing processes, which may be useful for optimizing the fracturing design of shale gas reservoirs.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Wei Gao ◽  
Javed Iqbal ◽  
Dan Xu ◽  
Haoyue Sui ◽  
Ruilin Hu

The properties of brittle minerals have great effect on the morphology of postfracturing network in shale reservoirs in the southeastern Ordos Basin, China. In order to study the effect of brittle mineral size distributions on the fracture parameters, the concrete cubes of 300 mm × 300 mm × 300 mm in size with four distinct brittle mineral sizes of 2.36 mm, 0.425 mm, 0.15 mm, and 0.075 mm were investigated under large-sized triaxial hydraulic fracturing test. The effect mechanism of aggregate on the fracture properties of shale was studied using ultrasonic technique, photosensitive electron microscope, and numerical simulation. The test results obtained for each specimen (both disturbed and undisturbed conditions) indicate that brittle mineral size has significant effect on the fracture extension. The tensile strength, fracture toughness, and fracture pressure were found to decrease with a decrease in maximum brittle mineral size when the maximum brittle mineral size is smaller than 0.425 mm. In addition to this, the degree of attenuation difference also follows the similar trend. Observed fracture morphology reveals that with an increase in maximum size of brittle mineral specimen, the tortuous and complicated cracking path generation increases. These findings would be very helpful in order to better understand the behavior of shale under hydraulic fracturing test.


Fractals ◽  
2017 ◽  
Vol 25 (04) ◽  
pp. 1740007 ◽  
Author(s):  
GUANGLONG SHENG ◽  
YULIANG SU ◽  
WENDONG WANG ◽  
FARZAM JAVADPOUR ◽  
MEIRONG TANG

According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length ([Formula: see text]), deviation angle ([Formula: see text]), iteration times ([Formula: see text]) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.


2021 ◽  
Author(s):  
Sherif Fakher ◽  
Abdulaziz Fakher

Abstract Hydraulic fracturing is the process by which many unconventional shale reservoirs are produced from. During this process, a highly pressurized fluid, usually water, is injected into the formation with a proppant. The fracturing fluid breaks the formation thus increasing its permeability, and the proppant ensures that the formation remains open. Although highly effective, hydraulic fracturing has several limitations including relying on a highly valuable commodity such as water. This research investigates the applicability of carbon dioxide as a fracturing fluid instead of water, and studies the main advantages and limitation of such a procedure. The main properties that could have a strong impact on the applicability of carbon dioxide based hydraulic fracturing are studied; these factors include carbon dioxide properties, proppant properties, and reservoir rock, fluid, and thermodynamic properties. This research aims to function as an initial introduction and roadmap to future research investigating the applicability of carbon dioxide as a fracturing fluid in unconventional oil and gas reservoirs.


SPE Journal ◽  
2018 ◽  
Vol 23 (04) ◽  
pp. 1412-1437 ◽  
Author(s):  
Xia Yan ◽  
ZhaoQin Huang ◽  
Jun Yao ◽  
Yang Li ◽  
Dongyan Fan ◽  
...  

Summary After hydraulic fracturing, a shale reservoir usually has multiscale fractures and becomes more stress-sensitive. In this work, an adaptive hybrid model is proposed to simulate hydromechanical coupling processes in such fractured-shale reservoirs during the production period (i.e., the hydraulic-fracturing process is not considered and cannot be simulated). In our hybrid model, the single-porosity model is applied in the region outside the stimulated reservoir volume (SRV), and the matrix and natural/induced fractures in the SRV region are modeled using a double-porosity model that can accurately simulate the matrix/fracture fluid exchange during the entire transient period. Meanwhile, the fluid flow in hydraulic fractures is modeled explicitly with the embedded-discrete-fracture model (EDFM), and a stabilized extended-finite-element-method (XFEM) formulation using the polynomial-pressure-projection (PPP) technique is applied to simulate mechanical processes. The developed stabilized XFEM formulation can avoid the displacement oscillation on hydraulic-fracture interfaces. Then a modified fixed-stress sequential-implicit method is applied to solve the hybrid model, in which mixed-space discretization [i.e., finite-volume method (FVM) for flow process and stabilized XFEM for geomechanics] is used. The robustness of the proposed model is demonstrated through several numerical examples. In conclusion, several key factors for gas exploitation are investigated, such as adsorption, Klinkenberg effect, capillary pressure, and fracture deformation. In this study, all the numerical examples are 2D, and the gravity effect is neglected in these simulations. In addition, we assume there is no oil phase in the shale reservoirs, thus the gas/water two-phase model is used to simulate the flow in these reservoirs.


Sign in / Sign up

Export Citation Format

Share Document