Determination of Dielectric Constants of Overburden Materials Using Ground Penetrating Radar

Author(s):  
B.V. Rao ◽  
M. Sevu ◽  
V. Narasaiah
Author(s):  
Peter M. Fischer ◽  
Patrik Klingborg ◽  
Fanny Kärfve ◽  
Fredrika Kärfve ◽  
C. Hagberg ◽  
...  

Determination of the complete occupational sequence of the site, including investigation of pre-12th century levels which were thoroughly studied by P. Åström since the 1970s, is the main task of the planned project. During the course of the expedition (NSCE11) in spring 2010 a ground-penetrating radar survey (GPR) was carried out at Dromolaxia Vizatzia/Hala Sultan Tekke in Area 6, leading to the discovery of a large Late Cypriote complex. The compound is bordered to the north by a substantial wall, against which nine rooms (so far) could be exposed. Two occupational phases have been verified but there are indications of a third. The suggested functions of the various structures of the most recent phase are: living, working, storage and administration spaces. The rich find contexts point to the production of textiles and metal objects, and the locally produced pottery is generally of a high quality. There are also many imports, mainly from the Mycenaean sphere of culture. The locally produced vessels from Phase 2 include the “Creature krater” which is a masterpiece of a high artistic standard. Another piece of elevated artistry is the piece of a “Warrior vase”.


2016 ◽  
Vol 17 (4) ◽  
pp. 362-370 ◽  
Author(s):  
Alexander Krainyukov ◽  
Igor Lyaksa

Abstract The paper is devoted to using ground penetrating radar (GPR) for the detection of tree roots in an urban area, since GPR allow detect the hidden objects in non invasive way. It is necessary exactly to know the growth direction, thickness and depth of the roots of the tree to confidently assert about the tree root influence on the technical condition of engineering objects and structures: of the buildings, of pavements, of roadway, of engineering communications and etc. The aim of the given research was experimentally to evaluation the possibilities of detection of tree roots in an urban area with the use of GPR on frequency 400 MHz and of algorithms of secondary processing of GPR signals. Results of interpretation of radar profile and evacuation of soil around tree show the possibility of detection of the tree roots and the determination of their parameters using one or two radar concentric profiles.


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 230 ◽  
Author(s):  
Xi Wu ◽  
Christopher Adam Senalik ◽  
James Wacker ◽  
Xiping Wang ◽  
Guanghui Li

An object detection method of ground-penetrating radar (GPR) signals using empirical mode decomposition (EMD) and dynamic time warping (DTW) is proposed in this study. Two groups of timber specimens were examined. The first group comprised of Douglas fir (Pseudotsuga menziesii) timber sections prepared in the laboratory with inserts of known internal characteristics. The second group comprised of timber girders salvaged from the timber bridges on historic Route 66 over 80 years. A GSSI Subsurface Interface Radar (SIR) System 4000 with a 2 GHz palm antenna was used to scan these two groups of specimens. GPR sensed differences in dielectric constants (DC) along the scan path caused by the presence of water, metal, or air within the wood. This study focuses on the feature identification and defect classification. The results show that the processing methods were efficient for the illustration of GPR information.


2020 ◽  
Vol 12 (11) ◽  
pp. 1749 ◽  
Author(s):  
Josep Pedret Rodés ◽  
Adriana Martínez Reguero ◽  
Vega Pérez-Gracia

Ground Penetrating Radar (GPR) is a prospecting method frequently used in monitoring asphalt pavements, especially as an optimal complement to the defection test that is commonly used for determining the structural condition of the pavements. Its application is supported by studies that demonstrate the existence of a relationship between the parameters determined in GPR data (usually travel time and wave amplitude) and the preservation conditions of the structure. However, the analysis of frequencies is rarely applied in pavement assessment. Nevertheless, spectral analysis is widespread in other fields such as medicine or dynamic analysis, being one the most common analytical methods in wave processing through use of the Fourier transform. Nevertheless, spectral analysis has not been thoroughly applied and evaluated in GPR surveys, specifically in the field of pavement structures. This work is focused on analyzing the behavior of the GPR data spectra as a consequence of different problems affecting the pavement. The study focuses on the determination of areas with failures in bituminous pavement structures. Results epitomize the sensitivity of frequencies to the materials and, in some cases, to the damage.


Landslides ◽  
2017 ◽  
Vol 14 (3) ◽  
pp. 1265-1274 ◽  
Author(s):  
Timotej Verbovšek ◽  
Adrijan Košir ◽  
Maša Teran ◽  
Marjana Zajc ◽  
Tomislav Popit

2020 ◽  
Vol 25 (2) ◽  
pp. 169-179
Author(s):  
Hashem Ranjy Roodposhti ◽  
Mohammad Kazem Hafizi ◽  
Mohammad Reza Soleymani Kermani

With the aid of ground penetrating radar (GPR), it is possible to evaluate physical properties of a constructed base layer in engineered structures (pavement, land consolidation projects, etc.) non-destructively, quickly, and accurately. High spatial variations of subsurface water content and deficient compaction can lead to unexpected damage and structural instability. In this research, we established a relationship between the dielectric constant, water content, and compaction, whereby, an interactive relationship between these parameters is presented. To achieve this, large-scale laboratory experiments were carried out on construction materials to simulate field conditions. According to USCS, the tested soil type was GW-GM (type E base layer according to Iran's highway specifications code). Furthermore, water content and compaction were changed between 4% -12.9% and 84.7% -94.9%, respectively. The travel-times in each test, including three profiles with more than 210 traces, are measured automatically. Additionally, the calculated dielectric constants were compared with the Topp and Roth equations. R-square and RMS error of the final interactive equation between dielectric constant and water content-compaction were 0.95 and 0.41, respectively. Moreover, the sensitivity analysis of the proposed interactive equation shows that changes in water content of soil have greater impact on dielectric constant than soil compaction changes. The data also indicate the importance of considering the compaction changes of soil to reduce the error in dielectric constant estimation.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2237-2257
Author(s):  
Mingkai Wang ◽  
Jian Wen ◽  
Wenbin Li

The growth of coarse roots is complex, leading to intricate patterns of root systems in three dimensions. To detect and recognize coarse roots, ground-penetrating radar (GPR) was used. According to the GPR theory, a clear profile hyperbola is formed on the GPR radargrams when electromagnetic waves travel across two surfaces with different dielectric constants. First, the forward models (different root orientations) were built with simulation software (GprMax3.0) based on the finite-different time-domain method (FDTD). As the radar moved forward, the signal reflection curve was generated in different root orientations. An algorithm was proposed to obtain the coordinates of a single coarse root and analyze the influence of root direction on the hyperbola of coarse root through a symmetry curve and relative error (RE). Based on GPR datasets from the simulation experiment, the controlled experiment evaluated feasibility and effectiveness of the simulation experiment. To demonstrate the effect of the root orientation, the algorithm was applied to in situ recognition of the Summer Palace. The results showed that the localization of root orientation was relatively accurate. However, the proposed algorithm was unable to implement automatic detection, and the results still required human intervention. This research provides a solid basis for the biomass measurement, diameter estimation, and especially the three-dimensional reconstruction of ancient and famous trees.


Sign in / Sign up

Export Citation Format

Share Document