Influence of Pore Pressure on Post-yield Stress Path Evolution in Porous Sandstone

Author(s):  
B.U. Ardo ◽  
E.H. Rutter ◽  
J. Mecklenburgh
2021 ◽  
Author(s):  
Ahmed E. Radwan ◽  
Souvik Sen

Abstract The purpose of this study is to evaluate the reservoir geomechanics and stress path values of the depleted Miocene sandstone reservoirs of the Badri field, Gulf of Suez Basin, in order to understand the production-induced normal faulting potential in these depleted reservoirs. We interpreted the magnitudes of pore pressure (PP), vertical stress (Sv), and minimum horizontal stress (Shmin) of the syn-rift and post-rift sedimentary sequences encountered in the studied field, as well as we validated the geomechanical characteristics with subsurface measurements (i.e. leak-off test (LOT), and modular dynamic tests) (MDT). Stress path (ΔPP/ΔShmin) was modeled considering a pore pressure-horizontal stress coupling in an uniaxial compaction environment. Due to prolonged production, The Middle Miocene Hammam Faraun (HF) and Kareem reservoirs have been depleted by 950-1000 PSI and 1070-1200 PSI, respectively, with current 0.27-0.30 PSI/feet PP gradients as interpreted from initial and latest downhole measurements. Following the poroelastic approach, reduction in Shmin is assessed and reservoir stress paths values of 0.54 and 0.59 are inferred in the HF and Kareem sandstones, respectively. As a result, the current rate of depletion for both Miocene reservoirs indicates that reservoir conditions are stable in terms of production-induced normal faulting. Although future production years should be paid more attention. Accelerated depletion rate could have compelled the reservoirs stress path values to the critical level, resulting in depletion-induced reservoir instability. The operator could benefit from stress path analysis in future planning of infill well drilling and production rate optimization without causing reservoir damage or instability.


2000 ◽  
Vol 3 (05) ◽  
pp. 394-400 ◽  
Author(s):  
M. Khan ◽  
L.W. Teufel

Summary Reservoir stress path is defined as the ratio of change in effective horizontal stress to the change in effective vertical stress from initial reservoir conditions during pore-pressure drawdown. Measured stress paths of carbonate and sandstone reservoirs are always less than the total stress boundary condition (isotropic loading) and are either greater or less than the stress path predicted by the uniaxial strain boundary condition. Clearly, these two boundary-condition models that are commonly used by the petroleum industry to calculate changes in effective stresses in a reservoir and to measure reservoir properties in the laboratory are inaccurate and can be misleading if applied to reservoir management problems. A geomechanical model that incorporates geologic and geomechanical parameters was developed to more accurately predict the reservoir stress path. Numerical results show that reservoir stress path is dependent on the size and geometry of the reservoir and on elastic properties of the reservoir rock and bounding formations. In general, stress paths become lower as the aspect ratio of reservoir length to thickness increases. Lenticular sandstone reservoirs have a higher stress path than blanket sandstone reservoirs that are continuous across a basin. This effect is enhanced when the bounding formations have a lower elastic modulus than the reservoir and when the reservoir is transversely isotropic. In addition, laboratory experiments simulating reservoir depletion for different stress path conditions demonstrate that stress-induced permeability anisotropy evolves during pore-pressure drawdown. The maximum permeability direction is parallel to the maximum principal stress and the magnitude of permeability anisotropy increases at lower stress paths. Introduction Matrix permeability and pore volume compressibility are fundamentally important characteristics of hydrocarbon reservoirs because they provide measures of reservoir volume and reservoir producibility. Laboratory studies have shown that these properties are stress sensitive and are usually measured under hydrostatic (isotropic) loads that do not truly reflect the anisotropic stress state that exists in most reservoirs and do not adequately simulate the evolution of deviatoric stresses in a reservoir as the reservoir is produced. Recent laboratory studies1–3 have shown that permeability and compressibility are dependent on the deviatoric stress and change significantly with reservoir stress path. In-situ stress measurements in carbonate and clastic reservoirs indicate that the reservoir stress path is not isotropic loading (equal to 1.0) and can range from 0.14 to 0.76. 4 The measured reservoir stress paths are also inconsistent with the elastic uniaxial strain model5 commonly used to calculate horizontal stress and changes in horizontal stress with pore-pressure drawdown. The calculated uniaxial strain stress path can be significantly less or greater than the measured stress path.4 Knowledge of the stress path that reservoir rock will follow during production and how this stress path will affect reservoir properties is critical for reservoir management decisions necessary to increase reservoir producibility. However, in-situ stress measurements needed to determine reservoir stress path are difficult and expensive to conduct, and may take several years to collect. Various analytical models have been proposed to calculate in-situ horizontal stresses and they could be applied to the prediction of reservoir stress path during pore-pressure drawdown.5–9 However, none of these models addresses all of the essential geological and geomechanical factors that influence reservoir stress path, such as reservoir size and geometry or the coupled mechanical interaction between the reservoir and the bounding formations. Accordingly, a geomechanical model was developed to more accurately predict reservoir stress path. The model incorporates essential geological and geomechanical factors that may control reservoir stress path during production. In addition, laboratory results showing the effect of reservoir stress path on permeability and permeability anisotropy in a low-permeability sandstone are also presented. These experiments clearly demonstrate that during pore-pressure drawdown permeability decreases and that permeability parallel and perpendicular to the maximum stress direction decreases at different rates. The smallest reduction in permeability is parallel to the maximum principal stress. Consequently, stress-induced permeability anisotropy evolves with pore-pressure drawdown and the magnitude of permeability anisotropy increases at lower stress paths. Field Measurements of Stress Path in Lenticular Sandstone Reservoirs Salz10 presented hydraulic fracture stress data and pore-pressure measurements from reservoir pressure build-up tests in low-permeability, lenticular, gas sandstones of the Vicksburg formation in the McAllen Ranch field, Texas (Table 1). This work was one of the first studies to clearly show that the total minimum horizontal stress is dependent on the pore pressure. Hydraulic fractures were completed in underpressured and overpressured sandstone intervals from approximately 3100 to 3800 m. Some of the sandstones (9A, 10A, 11A, 12A, 13A, and 14A) were later hydraulically fractured a second time to improve oil productivity after several years of production. For initial reservoir conditions before production, the total minimum horizontal stress shows a decrease with decreasing pore pressure for different sandstone reservoirs. The effective stress can also be determined from these data. Following Rice and Cleary11 effective stress is defined by σ = S − α P , ( 1 ) where ? is the effective stress, S is the total stress, ? is a poroelastic parameter, and P is the pore pressure. For this study ? is assumed to equal unity. A linear regression analysis of the minimum horizontal and vertical effective stress data shows that at initial reservoir conditions the ratio of change in minimum effective horizontal stress to the change in effective vertical stress with increasing depth and pore pressure is 0.50.


Géotechnique ◽  
2022 ◽  
pp. 1-35
Author(s):  
S. L. Chen ◽  
Y. N. Abousleiman

A novel graphical analysis-based method is proposed for analysing the responses of a cylindrical cavity expanding under undrained conditions in modified Cam Clay soil. The essence of developing such an approach is to decompose and represent the strain increment/rate of a material point graphically into the elastic and plastic components in the deviatoric strain plane. It allows the effective stress path in the deviatoric plane to be readily determined by solving a first-order differential equation with the Lode angle being the single variable. The desired limiting cavity pressure and pore pressure can be equally conveniently evaluated, through basic numerical integrations with respect to the mean effective stress. Some ambiguity is clarified between the generalized (work conjugacy-based) shear strain increments and the corresponding deviatoric invariants of incremental strains. The present graph-based approach is also applicable for the determination of the stress and pore pressure distributions around the cavity. When used for predicting the ultimate cavity/pore pressures, it is computationally advantageous over the existing semi-analytical solutions that involve solving a system of coupled governing differential equations for the effective stress components. It thus may serve potentially as a useful and accurate interpretation of the results of in-situ pressuremeter tests on clay soils.


Author(s):  
Mojtaba P. Shahri ◽  
Stefan Z. Miska

There has been an increasing consciousness regarding stress changes associated with reservoir depletion as the industry moves towards more challenging jobs in deep-water or depleted reservoirs. These stress changes play a significant role in the design of wells in this condition. Therefore, accurate prediction of reservoir stress path, i.e., change in horizontal stresses with pore pressure, is of vital importance. In this study, the current stress path formulation is investigated using a Tri-axial Rock Mechanics Testing Facility. The reservoir depletion scenario is simulated through experiments and provides a better perspective on the currently used formulation and how it’s applicable during production and injection periods. The effect of fluid re-injection into reservoirs on the horizontal stress is also analyzed using core samples. According to the results, formation fracture pressure would not be equal to its initial value if pressure builds up using re-injection. The irrecoverable formation fracture pressure has a power law relation with pore pressure drawdown range. In order to avoid higher permanent fracture pressure reduction, it’s recommended to start the injection process as soon as possible during the production life of reservoirs. According to the experimental results, rocks behave differently during production and injection periods. Poisson’s ratio is greater during pressure build-up as compared to the depletion period. According to the current industry standards, Poisson’s ratio is usually obtained using fracturing data; i.e., leak-off test or mini-fracture test, or well logging methods. However, we are not able to use the same Poisson’s ratio for both pressure drawdown and build-up scenarios according to the experimental data. Corresponding to Poisson’s ratio values, the change in horizontal stress with pore pressure during drawdown (production) is higher than during build-up (injection) period. The outcomes of this study can significantly contribute to well planning and design of challenging wells over the life of reservoirs.


2022 ◽  
Author(s):  
Ruqaiya Al Zadjali ◽  
Sandeep Mahaja ◽  
Mathieu M. Molenaar

Abstract Hydraulic Fracturing (HF) is widely used in PDO in low permeability tight gas formations to enhance production. The application of HF has been expanded to the Oil South as conventional practice in enhancing the recovery and production at lower cost. HF stimulation is used in a number of prospects in the south Oman, targeting sandstone formations such as Gharif, Al Khlata, Karim and Khaleel, most of which have undergone depletion. Fracture dimension are influenced by a combination of operational, well design and subsurface parameters such as injected fluid properties, injection rate, well inclination and azimuth, rock mechanical properties, formation stresses (i.e. fracture pressures) etc. Accurate fracture pressure estimate in HF design and modeling improves reliability of HF placement, which is the key for improved production performance of HF. HF treatments in the studied fields provide large volumes of valuable data. Developing standardized tables and charts can streamline the process to generate input parameters for HF modeling and design in an efficient and consistent manner. Results of the study can assist with developing guidelines and workflow and for HF operations. Field HF data from more than 100 wells in south Oman fields were analyzed to derive the magnitude of breakdown pressure (BP), Fracture Breakdown Pressure (FBP), Instantaneous Shut-In Pressure (ISIP) pressure, and Fracture Closure Pressure (FCP) and develop input correlations for HF design. Estimated initial FCP (in-situ pore pressure conditions) is in the range of 15.6 - 16 kPa/mTVD at reservoir formation pressure gradient of about 10.8 kPa/m TVD bdf. However, most of the fields have undergone variable degree of depletion prior to the HF operation. Horizontal stresses in the reservoir decrease with depletion, it is therefore important to assess the reduction of FCP with reduction in pore pressure (stress depletion). Depletion stress path coefficient (i.e. change on FCP as a fraction of change in pore pressure) was derived based on historic field data and used to predict reduction of FCP as a function of future depletion. Data from this field indicates that the magnitude of decrease in fracture pressure is about 50% of the pore pressure change. Based on the data analysis of available HF data, standardized charts and tables were developed to estimate FCP, FBP, and ISIP values. Ratios of FBP and ISIP to FCP were computed to establish trend with depth to provide inputs to HF planning and design. Results indicate FBP/FCP ratio ranges between 1.24-1.35 and ISIP/FCP ratio ranges between 1.1 to 1.2. Developed workflow and standardized tables, charts and trends provide reliable predictions inputs for HF modeling and design. Incorporating these data can be leveraged to optimize parameters for HF design and modeling for future wells.


Sign in / Sign up

Export Citation Format

Share Document