Experimental Investigation of Reservoir Stress Path Hysteresis During Production-Injection Periods

Author(s):  
Mojtaba P. Shahri ◽  
Stefan Z. Miska

There has been an increasing consciousness regarding stress changes associated with reservoir depletion as the industry moves towards more challenging jobs in deep-water or depleted reservoirs. These stress changes play a significant role in the design of wells in this condition. Therefore, accurate prediction of reservoir stress path, i.e., change in horizontal stresses with pore pressure, is of vital importance. In this study, the current stress path formulation is investigated using a Tri-axial Rock Mechanics Testing Facility. The reservoir depletion scenario is simulated through experiments and provides a better perspective on the currently used formulation and how it’s applicable during production and injection periods. The effect of fluid re-injection into reservoirs on the horizontal stress is also analyzed using core samples. According to the results, formation fracture pressure would not be equal to its initial value if pressure builds up using re-injection. The irrecoverable formation fracture pressure has a power law relation with pore pressure drawdown range. In order to avoid higher permanent fracture pressure reduction, it’s recommended to start the injection process as soon as possible during the production life of reservoirs. According to the experimental results, rocks behave differently during production and injection periods. Poisson’s ratio is greater during pressure build-up as compared to the depletion period. According to the current industry standards, Poisson’s ratio is usually obtained using fracturing data; i.e., leak-off test or mini-fracture test, or well logging methods. However, we are not able to use the same Poisson’s ratio for both pressure drawdown and build-up scenarios according to the experimental data. Corresponding to Poisson’s ratio values, the change in horizontal stress with pore pressure during drawdown (production) is higher than during build-up (injection) period. The outcomes of this study can significantly contribute to well planning and design of challenging wells over the life of reservoirs.

1997 ◽  
Vol 37 (1) ◽  
pp. 536
Author(s):  
R.R. Hillis ◽  
D.G. Crosby ◽  
A.K. Khurana

Theoretical fracture gradient relations are generally based on the assumption that the sedimentary sequence behaves elastically under conditions of lateral constraint. Hence the minimum horizontal stress (σhmin) is given by: where V is Poisson's ratio, σv is overburden stress, pp is pore pressure, and at is far -field tectonic stress. In driling practice, fracture initiation, or leak -off pressures, which are related to σhmin are most commonly predicted by the application of empirical stress /depth relations such as that proposed for offshore Western Australia by Vuckovic (1989): Leak -off pressure (psi) = 0.197D1145, where D is depth in feet. A modified form of the uniaxial elastic relation for the prediction of σhmin is proposed, such that: where the constants c and d are straight line regression constants derived from cross -plotting effective minimum horizontal stress and effective vertical stress. This relation, as opposed to previous empirical approaches to fracture gradient /σhmin determination, yields regression coefficients of physical significance: c represents the average Poisson's ratio term, v /(1 -v), and d represents an estimate of the tectonic (and inelastic) component of the minimum horizontal stress. This application of the modified fracture gradient relation, termed the effective stress cross -plot method, is tested successfully against published data from experimental wells in the East Texas Basin where independent estimates of Poisson's ratio are available. Leak -off pressures have been compiled from 61 wells in the Timor Sea. Leak -off pressures in the Timor Sea are somewhat lower than predicted by Vuckovic's (1989) stress /depth relation for offshore Western Australia, and a new, empirical stress /depth relation, which better fits the Timor Sea data is proposed: The effective stress cross -plot method is also applied to the Timor Sea data, yielding: Detailed pore pressure data were not available for the Timor Sea data -set and the effective stress cross -plot method does not fit the observed data any better than the new empirical stress /depth relation. However, the regression constants suggest an average Poisson's ratio of 0.26 and a relatively insignificant tectonic stress of 1 MPa for the Timor Sea.


2021 ◽  
Author(s):  
Ahmed E. Radwan ◽  
Souvik Sen

Abstract The purpose of this study is to evaluate the reservoir geomechanics and stress path values of the depleted Miocene sandstone reservoirs of the Badri field, Gulf of Suez Basin, in order to understand the production-induced normal faulting potential in these depleted reservoirs. We interpreted the magnitudes of pore pressure (PP), vertical stress (Sv), and minimum horizontal stress (Shmin) of the syn-rift and post-rift sedimentary sequences encountered in the studied field, as well as we validated the geomechanical characteristics with subsurface measurements (i.e. leak-off test (LOT), and modular dynamic tests) (MDT). Stress path (ΔPP/ΔShmin) was modeled considering a pore pressure-horizontal stress coupling in an uniaxial compaction environment. Due to prolonged production, The Middle Miocene Hammam Faraun (HF) and Kareem reservoirs have been depleted by 950-1000 PSI and 1070-1200 PSI, respectively, with current 0.27-0.30 PSI/feet PP gradients as interpreted from initial and latest downhole measurements. Following the poroelastic approach, reduction in Shmin is assessed and reservoir stress paths values of 0.54 and 0.59 are inferred in the HF and Kareem sandstones, respectively. As a result, the current rate of depletion for both Miocene reservoirs indicates that reservoir conditions are stable in terms of production-induced normal faulting. Although future production years should be paid more attention. Accelerated depletion rate could have compelled the reservoirs stress path values to the critical level, resulting in depletion-induced reservoir instability. The operator could benefit from stress path analysis in future planning of infill well drilling and production rate optimization without causing reservoir damage or instability.


2021 ◽  
Author(s):  
Nardthida Kananithikorn ◽  
Teenarat Songsaeng

Abstract Lost circulation is the most common drilling issue for infill drilling projects in Satun-Funan Fields, South Pattani Basin, Gulf of Thailand (GOT). The depleted sand is possible to be a root cause in many wells based on observation from resistivity time-lapse separation in depleted sands or shale nearby. Therefore, the objective of this study is to estimate fracture pressure related to the depleted sand and design an appropriate Equivalent Circulating Density (ECD) threshold for each well to avoid or minimize lost circulation and well control complication during drilling a new well. This study model is using Eaton (1969) equation. There are 3 input parameters which are Poisson's Ratio and pre-drilled estimated depletion pressure and depth. With limitations of no actual fracturing data and limited sonic log, the maximum ECD while lost circulation reading from Pressure While Drilling (PWD) tool and formation pressure test data were used to back-calculate for Poisson's Ratio and identified a relationship with depth. From the total of 68 wells in the Satun and Funan areas, the interpreted Poisson's Ratio ranges from 0.36 to 0.44 and its linear trend is apparently increasing with depth. To minimize the variation of back calculated Poisson's Ratio the local data become an important key for model validation and maintain the similarity of subsurface factors. This interpreted Poisson's ratio trend will be used to calculate for fracture pressure by incorporating with estimated depletion pressure and depth that expect to encounter in each planned well. The lowest fracture pressure in a planned well is used to prepare pre-drilled ECD management plan and a real-time well monitoring plan. Additionally, the model can be adjusted during the operational phase based on the new drilled well result. This alternative model was applied in 4 trial drilling projects in 2019 and fully implement in 6 drilling projects in 2020. The lost circulation can be prevented with value creation from expected gain reserves section is $57M and cost avoidance from non-productive time due to lost circulation is $3.4M. With an effort, good communication and great collaboration among cross-functional teams, the model success rate increases by 12%. However, there are some unexpected lost events occurred even though the maximum ECD lower than expected fracture pressure. This suspect as a combination of limitations and uncertainties on key input parameters and drilling parameters. In the future, the model is planned to expand to other gas fields in the Pattani Basin which will move to more infill phase and have higher chance of getting lost circulation to maximize benefits as the success case in Satun and Funan fields.


2000 ◽  
Vol 3 (05) ◽  
pp. 394-400 ◽  
Author(s):  
M. Khan ◽  
L.W. Teufel

Summary Reservoir stress path is defined as the ratio of change in effective horizontal stress to the change in effective vertical stress from initial reservoir conditions during pore-pressure drawdown. Measured stress paths of carbonate and sandstone reservoirs are always less than the total stress boundary condition (isotropic loading) and are either greater or less than the stress path predicted by the uniaxial strain boundary condition. Clearly, these two boundary-condition models that are commonly used by the petroleum industry to calculate changes in effective stresses in a reservoir and to measure reservoir properties in the laboratory are inaccurate and can be misleading if applied to reservoir management problems. A geomechanical model that incorporates geologic and geomechanical parameters was developed to more accurately predict the reservoir stress path. Numerical results show that reservoir stress path is dependent on the size and geometry of the reservoir and on elastic properties of the reservoir rock and bounding formations. In general, stress paths become lower as the aspect ratio of reservoir length to thickness increases. Lenticular sandstone reservoirs have a higher stress path than blanket sandstone reservoirs that are continuous across a basin. This effect is enhanced when the bounding formations have a lower elastic modulus than the reservoir and when the reservoir is transversely isotropic. In addition, laboratory experiments simulating reservoir depletion for different stress path conditions demonstrate that stress-induced permeability anisotropy evolves during pore-pressure drawdown. The maximum permeability direction is parallel to the maximum principal stress and the magnitude of permeability anisotropy increases at lower stress paths. Introduction Matrix permeability and pore volume compressibility are fundamentally important characteristics of hydrocarbon reservoirs because they provide measures of reservoir volume and reservoir producibility. Laboratory studies have shown that these properties are stress sensitive and are usually measured under hydrostatic (isotropic) loads that do not truly reflect the anisotropic stress state that exists in most reservoirs and do not adequately simulate the evolution of deviatoric stresses in a reservoir as the reservoir is produced. Recent laboratory studies1–3 have shown that permeability and compressibility are dependent on the deviatoric stress and change significantly with reservoir stress path. In-situ stress measurements in carbonate and clastic reservoirs indicate that the reservoir stress path is not isotropic loading (equal to 1.0) and can range from 0.14 to 0.76. 4 The measured reservoir stress paths are also inconsistent with the elastic uniaxial strain model5 commonly used to calculate horizontal stress and changes in horizontal stress with pore-pressure drawdown. The calculated uniaxial strain stress path can be significantly less or greater than the measured stress path.4 Knowledge of the stress path that reservoir rock will follow during production and how this stress path will affect reservoir properties is critical for reservoir management decisions necessary to increase reservoir producibility. However, in-situ stress measurements needed to determine reservoir stress path are difficult and expensive to conduct, and may take several years to collect. Various analytical models have been proposed to calculate in-situ horizontal stresses and they could be applied to the prediction of reservoir stress path during pore-pressure drawdown.5–9 However, none of these models addresses all of the essential geological and geomechanical factors that influence reservoir stress path, such as reservoir size and geometry or the coupled mechanical interaction between the reservoir and the bounding formations. Accordingly, a geomechanical model was developed to more accurately predict reservoir stress path. The model incorporates essential geological and geomechanical factors that may control reservoir stress path during production. In addition, laboratory results showing the effect of reservoir stress path on permeability and permeability anisotropy in a low-permeability sandstone are also presented. These experiments clearly demonstrate that during pore-pressure drawdown permeability decreases and that permeability parallel and perpendicular to the maximum stress direction decreases at different rates. The smallest reduction in permeability is parallel to the maximum principal stress. Consequently, stress-induced permeability anisotropy evolves with pore-pressure drawdown and the magnitude of permeability anisotropy increases at lower stress paths. Field Measurements of Stress Path in Lenticular Sandstone Reservoirs Salz10 presented hydraulic fracture stress data and pore-pressure measurements from reservoir pressure build-up tests in low-permeability, lenticular, gas sandstones of the Vicksburg formation in the McAllen Ranch field, Texas (Table 1). This work was one of the first studies to clearly show that the total minimum horizontal stress is dependent on the pore pressure. Hydraulic fractures were completed in underpressured and overpressured sandstone intervals from approximately 3100 to 3800 m. Some of the sandstones (9A, 10A, 11A, 12A, 13A, and 14A) were later hydraulically fractured a second time to improve oil productivity after several years of production. For initial reservoir conditions before production, the total minimum horizontal stress shows a decrease with decreasing pore pressure for different sandstone reservoirs. The effective stress can also be determined from these data. Following Rice and Cleary11 effective stress is defined by σ = S − α P , ( 1 ) where ? is the effective stress, S is the total stress, ? is a poroelastic parameter, and P is the pore pressure. For this study ? is assumed to equal unity. A linear regression analysis of the minimum horizontal and vertical effective stress data shows that at initial reservoir conditions the ratio of change in minimum effective horizontal stress to the change in effective vertical stress with increasing depth and pore pressure is 0.50.


1962 ◽  
Vol 52 (1) ◽  
pp. 27-36
Author(s):  
J. T. Cherry

Abstract The body waves and surface waves radiating from a horizontal stress applied at the free surface of an elastic half space are obtained. The SV wave suffers a phase shift of π at 45 degrees from the vertical. Also, a surface wave that is SH in character but travels with the Rayleigh velocity is shown to exist. This surface wave attenuates as r−3/2. For a value of Poisson's ratio of 0.25 or 0.33, the amplitude of the Rayleigh waves from a horizontal source should be smaller than the amplitude of the Rayleigh waves from a vertical source. The ratio of vertical to horizontal amplitude for the Rayleigh waves from the horizontal source is the same as the corresponding ratio for the vertical source for all values of Poisson's ratio.


Author(s):  
Masoud Hoseinpour ◽  
Mohammad Ali Riahi

AbstractThe challenges behind this research were encountered while drilling into the Ilam, Mauddud, Gurpi, and Mishrif Formations, where severe drilling instability-related issues were observed across the weaker formations above the reservoir intervals. In this paper, geomechanical parameters were carried out to determine optimum mud weight windows and safe drilling deviation trajectories using the geomechanical parameters. We propose a workflow to determine the equivalent mud window (EMW) that resulted in 11.18–12.61 ppg which is suitable for Gurpi formation and 9.36–13.13 ppg for Ilam and Mishrif Formations, respectively. To estimate safe drilling trajectories, the Poisson’s ratio, Young’s modulus, and unconfined compressive strength (UCS) parameters were determined. These parameters illustrate an optimum drilling trajectory angle of 45° (Azimuth 277°) for the Ilam to Mauddud Formations and less than 35° for the Gurpi Formation. Our analysis reveals that maximum horizontal stress and Poisson’s ratio have the most impact on determining the optimum drilling mud weight windows and safe drilling deviation trajectories. On the contrary, vertical stress and Young’s modulus have minimum impact on drilling mud weight windows and safe drilling deviation trajectories. This study can be used as a reference for the optimal mud weight window to overcome drilling instability issues in future wellbore planning in the study.


2019 ◽  
Vol 20 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Neaam F. Hussain ◽  
Faleh H. M. Al Mahdawi

   Fracture pressure gradient prediction is complementary in well design and it is must be considered in selecting the safe mud weight, cement design, and determine the optimal casing seat to minimize the common drilling problems. The exact fracture pressure gradient value obtained from tests on the well while drilling such as leak-off test, formation integrity test, cement squeeze ... etc.; however, to minimize the total cost of drilling, there are several methods could be used to calculate fracture pressure gradient classified into two groups: the first one depend on Poisson’s ratio of the rocks and the second is fully empirical methods. In this research, the methods selected are Huubert and willis, Cesaroni I, Cesaroni II, Cesaroni III, Eaton, and Daines where Poisson’s ratio is considered essential here and the empirical methods selected are Matthews and Kelly and Christman. The results of these methods give an approximately match with the previous field study which has been relied upon in drilling the previous wells in the field and Cesaroni I is selected to be the equation that represents the field under study in general. In the shallower formations, Cesaroni I is the best method; while in deepest formations, Eaton, Christman, and Cesaroni I are given a good and approximately matching. The fracture pressure gradient of Halfaya oilfield range is (0.98 to 1.03) psi/ft.


2022 ◽  
Author(s):  
Ruqaiya Al Zadjali ◽  
Sandeep Mahaja ◽  
Mathieu M. Molenaar

Abstract Hydraulic Fracturing (HF) is widely used in PDO in low permeability tight gas formations to enhance production. The application of HF has been expanded to the Oil South as conventional practice in enhancing the recovery and production at lower cost. HF stimulation is used in a number of prospects in the south Oman, targeting sandstone formations such as Gharif, Al Khlata, Karim and Khaleel, most of which have undergone depletion. Fracture dimension are influenced by a combination of operational, well design and subsurface parameters such as injected fluid properties, injection rate, well inclination and azimuth, rock mechanical properties, formation stresses (i.e. fracture pressures) etc. Accurate fracture pressure estimate in HF design and modeling improves reliability of HF placement, which is the key for improved production performance of HF. HF treatments in the studied fields provide large volumes of valuable data. Developing standardized tables and charts can streamline the process to generate input parameters for HF modeling and design in an efficient and consistent manner. Results of the study can assist with developing guidelines and workflow and for HF operations. Field HF data from more than 100 wells in south Oman fields were analyzed to derive the magnitude of breakdown pressure (BP), Fracture Breakdown Pressure (FBP), Instantaneous Shut-In Pressure (ISIP) pressure, and Fracture Closure Pressure (FCP) and develop input correlations for HF design. Estimated initial FCP (in-situ pore pressure conditions) is in the range of 15.6 - 16 kPa/mTVD at reservoir formation pressure gradient of about 10.8 kPa/m TVD bdf. However, most of the fields have undergone variable degree of depletion prior to the HF operation. Horizontal stresses in the reservoir decrease with depletion, it is therefore important to assess the reduction of FCP with reduction in pore pressure (stress depletion). Depletion stress path coefficient (i.e. change on FCP as a fraction of change in pore pressure) was derived based on historic field data and used to predict reduction of FCP as a function of future depletion. Data from this field indicates that the magnitude of decrease in fracture pressure is about 50% of the pore pressure change. Based on the data analysis of available HF data, standardized charts and tables were developed to estimate FCP, FBP, and ISIP values. Ratios of FBP and ISIP to FCP were computed to establish trend with depth to provide inputs to HF planning and design. Results indicate FBP/FCP ratio ranges between 1.24-1.35 and ISIP/FCP ratio ranges between 1.1 to 1.2. Developed workflow and standardized tables, charts and trends provide reliable predictions inputs for HF modeling and design. Incorporating these data can be leveraged to optimize parameters for HF design and modeling for future wells.


SPE Journal ◽  
2015 ◽  
Vol 20 (05) ◽  
pp. 1041-1052 ◽  
Author(s):  
Mojtaba P. Shahri ◽  
Stefan Z. Miska

Summary Poisson's ratio is usually determined with well logging, fracturing data, and core samples. However, these methods provide us with a Poisson's ratio that is representative of only near-wellbore regions. In this paper, a technique is proposed by extending currently used pressure-transient-testing concepts to include reservoir stresses. More specifically, the interference well test is generalized to find not only conventional flow parameters such as reservoir transmissivity and storage capacity, but also the average in-situ Poisson's ratio. This is accomplished with the generalized diffusivity equation, which takes into account flow-induced stress changes. First, a generalized diffusivity equation is formulated by considering a deformable porous medium. The main goal of the generalized diffusivity equation is to extend current well-testing methods to include both fluid-flow and rock-mechanics aspects, and to present a way to determine the rock-mechanics-related property, Poisson's ratio, from the interference-well test. The line-source solution to the diffusivity equation is used to modify the current interference well-test technique. A synthetic example is presented to show the main steps of the proposed transient well-testing analysis technique. In addition, application of the proposed method is illustrated with interference-well-test field data. With a Monte Carlo simulation, effects of uncertainty in the input data on the prediction of Poisson's ratio are investigated, as well. In addition, a coupled fluid-flow/geomechanical simulation is performed to show the validity of the proposed formulation and corresponding improvement over the current analytical approach. One can put in practice an average in-situ value in different applications requiring accurate value of Poisson's ratio on the reservoir scale. Some examples of these include in-situ-stress-field determination, stress distribution and rock-mass deformation, and the next generation of coupled fluid-flow/geomechanical simulators. By use of Poisson's ratio that could capture flow-induced stress changes, we would be able to find the stress distribution caused by production/injection within the reservoir more precisely as well.


2020 ◽  
Vol 8 (4) ◽  
pp. T1023-T1036
Author(s):  
Cristina Mariana Ruse ◽  
Mehdi Mokhtari

To avoid steep declines in the Tuscaloosa Marine Shale (TMS) production, wells are fracture-stimulated to release the hydrocarbons trapped in the matrix of the formation. An accurate estimation of Young’s modulus and Poisson’s ratio is essential for hydraulic fracture propagation. In addition, ignoring the highly heterogeneous and anisotropic character of TMS can lead to erroneous stress values, which subsequently affect hydraulic fracture width estimates and the overall hydraulic fracturing process. We have developed an empirical 1D geomechanical model that takes into account VTI anisotropy, and it is used to characterize the elastic mechanical properties of TMS in two wells. In the analyzed formation, the vertical Poisson’s ratio is less than the horizontal Poisson’s ratio, which suggests the necessity of an alternative to the ANNIE equations. The stiffness coefficients [Formula: see text] and [Formula: see text] were estimated using the relationships developed from the ultrasonic core data available for the two TMS. Further, correlations between the static and dynamic properties from laboratory tests were used to improve the minimum horizontal stress calculation. We compare VTI Young’s moduli, Poisson’s ratios, and minimum horizontal stress with the isotropic solution. VTI modeling improves the estimation of the elastic mechanical properties. The isotropic solution underestimates the minimum horizontal stress in the formation. Moreover, it was shown that the 20 ft shale interval below the TMS base is characterized by a low Young’s modulus (the vertical Young’s modulus is equal to 20 GPa, whereas the horizontal Young’s modulus is equal to 40 GPa) and may be a frac barrier.


Sign in / Sign up

Export Citation Format

Share Document