Sub-chapter 1.2.2. The climate of the Mediterranean regions in the future climate projections

Author(s):  
Serge Planton ◽  
Fatima Driouech ◽  
Khalid EL Rhaz ◽  
Piero Lionello
2021 ◽  
Author(s):  
Alexia Karwat ◽  
Christian L. E. Franzke

<p>Over the last few decades heat waves have intensified, become more common, pose severe health risks, especially in densely populated cities, and have led to excess mortality. While the probability of being adversely affected by heat stress has significantly increased over the last few decades, the risk of heat mortality is rarely quantified. This quantification of heat mortality risk is necessary for systematic adaptation measures. Furthermore, heat mortality records are sparse and short, which presents a challenge for assessing heat mortality risk for future climate projections. It is therefore crucial to derive indicators for a systematic heat mortality risk assessment. Here, risk indicators based on temperature and mortality data are developed and applied to major cities in Germany, France and Spain, using regional climate model simulations. These simulations have biases of up to 3°C with respect to observations and, thus, need to be bias-corrected. Bias-corrected daily maximum, minimum and wet-bulb temperatures show increasing trends in future climate projections for most considered cities. Additionally, we derive a relationship of daily maximum temperatures and mortality for producing future projections of heat mortality risk due to extreme temperatures based on low (Representative Concentration Pathway; RCP2.6) and high (RCP8.5) emission scenario future climate projections. Our results illustrate that heat mortality increases by about 0.9%/decade in Germany, 1.7%/decade in France and 7.9%/decade in Spain for RCP8.5 by 2050. The future climate projections also show that wet-bulb temperatures above 30°C will be reached regularly with maxima above 40°C likely by 2050. Our results suggest a significant increase of heat mortality in the future, especially in Spain. On average, our results indicate that the mortality risk trend is almost twice as high in all three countries for the RCP8.5 scenario compared to RCP2.6.</p>


2021 ◽  
Vol 13 (22) ◽  
pp. 12825
Author(s):  
Theodoros Katopodis ◽  
Emmanuel D. Adamides ◽  
Athanasios Sfetsos ◽  
Antonios Mountouris

The impacts of climate change are anticipated to become stronger in the future, leading to higher costs and more severe accidents in the oil industry’s facilities and surrounding communities. Motivated by this, the main objective of this paper is to develop, for the oil industry, a risk assessment methodology that considers future climate projections. In the context of an action research effort, carried out in a refinery in Greece, we adapted the organization’s extant risk management approach based on the Risk Assessment Matrix (RAM) and suggested a risk quantification process that incorporates future climate projections. The Climate Risk Assessment Matrix (CRAM) was developed to be used to assess the exposure of the facility’s assets, including human resources, to future climate risks. To evaluate CRAM, a comparison with RAM for the specific organization for the period 1980–2004 was made. Next, the application of CRAM for the period 2025–2049 indicated that, even though the resilience of the operations of the company to extreme conditions seems adequate at present, increased attention should be paid in the future to the resilience of refinery processes, the cooling system, and human resources. Beyond the specific case, the paper provides lessons for similar organizations and infrastructures located elsewhere.


Author(s):  
Serge Planton ◽  
Piero Lionello ◽  
Vincenzo Artale ◽  
Rolland Aznar ◽  
Adriana Carrillo ◽  
...  

Author(s):  
Alexia Karwat ◽  
Christian L. E. Franzke

AbstractOver the last few decades heat waves have intensified and have led to excess mortality. While the probability of being affected by heat stress has significantly increased, the risk of heat mortality is rarely quantified. This quantification of heat mortality risk is necessary for systematic adaptation measures. Furthermore, heat mortality records are sparse and short, which presents a challenge for assessing heat mortality risk for future climate projections. It is therefore crucial to derive indicators for a systematic heat mortality risk assessment. Here, risk indicators based on temperature and mortality data are developed and applied to major cities in Germany, France and Spain, using regional climate model simulations. Bias-corrected daily maximum, minimum and wet-bulb temperatures show increasing trends in future climate projections for most considered cities. Additionally, we derive a relationship between daily maximum temperatures and mortality for producing future projections of heat mortality risk due to extreme temperatures based on low (Representative Concentration Pathway; RCP2.6) and high (RCP8.5) emission scenario future climate projections. Our results illustrate that heat mortality increases by about 0.9%/decade in Germany, 1.7%/decade in France and 7.9%/decade in Spain for RCP8.5 by 2050. The future climate projections also show that wet-bulb temperatures above 30°C will be reached regularly with maxima above 40°C likely by 2050. Our results suggest a significant increase of heat mortality in the future, especially in Spain. On average, our results indicate that the mortality risk trend is almost twice as high in all three countries for the RCP8.5 scenario compared to RCP2.6.


2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

<p>Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.</p>


2015 ◽  
Vol 112 (19) ◽  
pp. 5921-5926 ◽  
Author(s):  
Jong-Yeon Park ◽  
Jong-Seong Kug ◽  
Jürgen Bader ◽  
Rebecca Rolph ◽  
Minho Kwon

Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.


Sign in / Sign up

Export Citation Format

Share Document