A relationship between the Avogadro’s number NA and the transition frequency of the caesium 133 atom ΔνCs

2021 ◽  
Vol 34 (1) ◽  
pp. 12-16
Author(s):  
Teodor Ognean

At the 26th meeting of the General Conference on Weights and Measures (CGPM) held on 13‐16 November 2018 at Versailles, France, the new International System of Units (SI) was established. Following the CGPM’s decision, the new SI units were established based upon a set of seven defining constants. This set of constants is the most fundamental feature in the definition of the entire system of units. What is truly remarkable about the new SI is the fact that all measurement units, except the amount of substance mole and Avogadro’s number NA , are defined based on the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom <mml:math display="inline"> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">Δ</mml:mi> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">Cs</mml:mi> </mml:mrow> </mml:msub> </mml:math> equal to 9 192 631 770 Hz. This article, based on dimensional analysis, presents the possibility of connecting the Avogadro’s number NA and the mole, to the transition frequency <mml:math display="inline"> <mml:msub> <mml:mrow> <mml:mo>Δν</mml:mo> </mml:mrow> <mml:mrow> <mml:mtext>Cs</mml:mtext> </mml:mrow> </mml:msub> </mml:math> .

2019 ◽  
Vol 85 (2) ◽  
pp. 5-11
Author(s):  
L. A. Konopel’ko ◽  
R. L. Kadis ◽  
Yu. A. Kustikov

Redefinition of the basic units of the International System of Units (SI) — the kilogram, mole, ampere, and kelvin, — which are now expressed in terms of fundamental physical constants means a substantial revision of the system. In particular, the new definition of the mole fixing the value of the Avogadro constant sets a unit of the amount of substance, which is independent of the unit of mass. We consider some consequences of redefining (the mole and kilogram) and focus on the uncertainty of measuring the amount of substance and related quantities which are important for description of the mixture composition. The issue regarding the molar mass of the substance and associated uncertainty is considered in detail It is noted that calculation of the molar mass using relative atomic masses, involves the molar mass constant which is not equal exactly to 1 g/'mol in the new SI. This introduces an additional, though very small, uncertainty of less than 1 x 10-9in relative terms. The budget of uncertainty for the amount of substance determined through the mass measurements when the mass is measured with the highest accuracy is scrutinized. It is demonstrated that for substances of less than 99.98% purity, the uncertainty associated to the purity is comparable to that of relative atomic masses of the elements. For high-purity substances, the uncertainty in the relative atomic masses have the largest contribution to the budget. Anyhow, the uncertainty associated to the molar mass constant is three orders of magnitude less than the nearest contribution to the uncertainty attributed to weighing. In the case of derived quantities which are the ratio of two quantities of the same kind, the additional uncertainty does not arise at all. This is illustrated by the calculation of the mole fraction of a component in the gravimetrically prepared gas mixture.


Author(s):  
Ian M. Mills ◽  
Peter J. Mohr ◽  
Terry J. Quinn ◽  
Barry N. Taylor ◽  
Edwin R. Williams

We review the proposal of the International Committee for Weights and Measures (Comité International des Poids et Mesures, CIPM), currently being considered by the General Conference on Weights and Measures (Conférences Générales des Poids et Mesures, CGPM), to revise the International System of Units (Le Système International d'Unitès, SI). The proposal includes new definitions for four of the seven base units of the SI, and a new form of words to present the definitions of all the units. The objective of the proposed changes is to adopt definitions referenced to constants of nature, taken in the widest sense, so that the definitions may be based on what are believed to be true invariants. In particular, whereas in the current SI the kilogram, ampere, kelvin and mole are linked to exact numerical values of the mass of the international prototype of the kilogram, the magnetic constant (permeability of vacuum), the triple-point temperature of water and the molar mass of carbon-12, respectively, in the new SI these units are linked to exact numerical values of the Planck constant, the elementary charge, the Boltzmann constant and the Avogadro constant, respectively. The new wording used expresses the definitions in a simple and unambiguous manner without the need for the distinction between base and derived units. The importance of relations among the fundamental constants to the definitions, and the importance of establishing a mise en pratique for the realization of each definition, are also discussed.


2018 ◽  
Vol 90 (1) ◽  
pp. 175-180 ◽  
Author(s):  
Roberto Marquardt ◽  
Juris Meija ◽  
Zoltán Mester ◽  
Marcy Towns ◽  
Ron Weir ◽  
...  

AbstractIn 2011 the General Conference on Weights and Measures (CGPM) noted the intention of the International Committee for Weights and Measures (CIPM) to revise the entire International System of Units (SI) by linking all seven base units to seven fundamental physical constants. Of particular interest to chemists, new definitions for the kilogram and the mole have been proposed. A recent IUPAC Technical Report discussed these new definitions in relation to immediate consequences for the chemical community. This IUPAC Recommendation on the preferred definition of the mole follows from this Technical Report. It supports a definition of the mole based on a specified number of elementary entities, in contrast to the present 1971 definition.


ACTA IMEKO ◽  
2014 ◽  
Vol 3 (2) ◽  
pp. 3 ◽  
Author(s):  
Roman Schwartz ◽  
Michael Borys

At its 24<sup>th</sup> meeting in October 2011 the General Conference on Weights and Measures (CGPM) adopted a Resolution on the possible future revision of the International System of Units (SI). This paper provides an overview of the proposed changes to the SI, the focus being on the proposed redefinition of the kilogram and possible consequences for mass metrology.<br />


Author(s):  
Barry N. Taylor

A revised International System of Units (SI) is expected to be established by the 26th General Conference on Weights and Measures when it convenes in November 2018 and to be put into practice starting on 20 May 2019, World Metrology Day. In consequence, the article published in this journal in 2011, “The Current SI Seen from the Perspective of the Proposed New SI,” is updated in this paper, which provides an opportunity to again demonstrate the usefulness of the quantity calculus in dealing with quantities and units. The quantity calculus and the seven defining constants of the current and revised SI are reviewed, and expressions for the seven current and revised SI base units are given. Relationships between the magnitudes of revised and current SI units and expressions for the numerical values of current SI defining constants expressed in revised SI units are also obtained using the quantity calculus.


2020 ◽  
Vol 7 (12) ◽  
pp. 1837-1840
Author(s):  
Jin Wang

Abstract On 13–16 November 2018, the 26th General Conference of Weights and Measures (CGPM) was held in Paris. The conference adopted Resolution A on ‘Revision of the International System of Units (SI).’ According to Resolution A: four of the SI basic units, namely kilograms, amps, kelvin and mole, are defined by the Planck constant h, the basic charge constant e, the Boltzmann constant k and the Avogadro constant NA, respectively. This establishes the basic quantities and units in SI on a series of constants. The new SI was officially launched on 20 May 2019. This is the most significant change and a milestone in the history of metrology since the Metre Convention was signed in 20 May 1875. Professor Tianchu Li, an academician of the Chinese Academy of Engineering, has been working on time and frequency standards for 37 years. In this interview, Prof. Li reviews the quantization and constant evolutions of the second and meter, and introduces the redefinitions of ampere, kelvin, kilogram and mole, and their significance for precision measurements.


Author(s):  
J. Fischer

At its 25th meeting, the General Conference on Weights and Measures (CGPM) approved Resolution 1 ‘On the future revision of the International System of Units, the SI’, which sets the path towards redefinition of four base units at the next CGPM in 2018. This constitutes a decisive advance towards the formal adoption of the new SI and its implementation. Kilogram, ampere, kelvin and mole will be defined in terms of fixed numerical values of the Planck constant, elementary charge, Boltzmann constant and Avogadro constant, respectively. The effect of the new definition of the kelvin referenced to the value of the Boltzmann constant k is that the kelvin is equal to the change of thermodynamic temperature T that results in a change of thermal energy kT by 1.380 65×10 −23  J. A value of the Boltzmann constant suitable for defining the kelvin is determined by fundamentally different primary thermometers such as acoustic gas thermometers, dielectric constant gas thermometers, noise thermometers and the Doppler broadening technique. Progress to date of the measurements and further perspectives are reported. Necessary conditions to be met before proceeding with changing the definition are given. The consequences of the new definition of the kelvin on temperature measurement are briefly outlined.


2020 ◽  
pp. 26-32
Author(s):  
M. I. Kalinin ◽  
L. K. Isaev ◽  
F. V. Bulygin

The situation that has developed in the International System of Units (SI) as a result of adopting the recommendation of the International Committee of Weights and Measures (CIPM) in 1980, which proposed to consider plane and solid angles as dimensionless derived quantities, is analyzed. It is shown that the basis for such a solution was a misunderstanding of the mathematical formula relating the arc length of a circle with its radius and corresponding central angle, as well as of the expansions of trigonometric functions in series. From the analysis presented in the article, it follows that a plane angle does not depend on any of the SI quantities and should be assigned to the base quantities, and its unit, the radian, should be added to the base SI units. A solid angle, in this case, turns out to be a derived quantity of a plane angle. Its unit, the steradian, is a coherent derived unit equal to the square radian.


2008 ◽  
Vol 381-382 ◽  
pp. 619-622
Author(s):  
W. Zeng ◽  
Xiang Qian Jiang ◽  
P. Scott ◽  
L. Blunt

The detection of stationary and non-stationary noise in environmental vibration data is an important issue when considering the precision of the Watt balance, an electromechanical apparatus for the new definition of the kilogram in the international system of Units (SI). In this paper, the authors propose a frequency histogram method to find the structure of the stationary noise from large amount of datasets. For the non-stationary noise, the authors propose a wavelet based denoising methods to distinguish the transient events from the background “noise”, to find their duration and content and to identify their location in time.


2018 ◽  
Author(s):  
Rainer Feistel

Abstract. In the terrestrial climate system, water is a key player in the form of its different ambient phases of ice, liquid and vapour, admixed with sea salt in the ocean and with dry air in the atmosphere. For proper balances of climatic energy and entropy fluxes in models and observation, a highly accurate, consistent and comprehensive thermodynamic standard framework is requisite in geophysics and climate research. The new “Thermodynamic Equation of Seawater – 2010” (TEOS-10) constitutes such a standard for properties of water in its various manifestations in the hydrological cycle. TEOS-10 has been recommended internationally in 2009 by the Intergovernmental Oceanographic Commission (IOC) to replace the previous 1980 seawater standard, EOS-80, and in 2011 by the International Union of Geodesy and Geophysics (IUGG) “as the official description for the properties of seawater, of ice and of humid air”. This paper briefly reviews the development of TEOS-10, its novel axiomatic properties, new oceanographic tools it offers, and important tasks that still await solutions by ongoing research. Among the latter are new definitions and measurement standards for seawater salinity and pH, in order to establish their metrological traceability to the International System of Units (SI), for the first time after a century of widespread use. Of similar climatological relevance is the development and recommendation of a uniform standard definition of atmospheric relative humidity that is unambiguous and rigorously based on physical principles.


Sign in / Sign up

Export Citation Format

Share Document