PERIPHERAL NERVE REGENERATION THROUGH NERVE GUIDES FILLED WITH BILOBALIDE AND SCHWANN CELLS

2006 ◽  
Vol 18 (01) ◽  
pp. 8-12
Author(s):  
MING-CHIN LU ◽  
YUNG-HISEN CHANG ◽  
LEIH-CHIH CHIANG ◽  
HAI-TING WANG ◽  
CHUN-YUAN CHENG ◽  
...  

The present study provides in vivo trials of silicone rubber chambers filled with different concentrations of bilobalide (0, 50, 100, 200, 400 μM) and Schwann cells (1.5 × 105 cell/ml) in a 1:1 volumetric addition to bridge a 15 mm sciatic nerve defect in rats. At the conclusion of 8 weeks, histological technique was used to evaluate the functional recovery of the nerve. In the groups receiving the Schwann cells and bilobalide at 50, 100, 200 and 400 μM, 44% (4 of 9, one died during experiment), 50% (5 of 10), 30% (3 of 10), and 60% (6 of 10) of the animals exhibiting a regenerated nerve cable across the 15-mm gap, respectively. In comparison, 50% (5 of 10) of the animals in the group with Schwann cells only showed such regenerated nerve cables. Although the adding of bilobalide did not promote the nerve growth-promoting capability of Schwann cells in the nerve guides, the techniques we used in this study provided a new approach combining Chinese medicine and tissue engineering to nerve regeneration.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Hui Liu ◽  
Peizhen Lv ◽  
Yongjia Zhu ◽  
Huayu Wu ◽  
Kun Zhang ◽  
...  

Abstract Salidriside (SDS), a phenylpropanoid glycoside derived from Rhodiola rosea L, has been shown to be neuroprotective in many studies, which may be promising in nerve recovery. In this study, the neuroprotective effects of SDS on engineered nerve constructed by Schwann cells (SCs) and Poly (lactic-co-glycolic acid) (PLGA) were studied in vitro. We further investigated the effect of combinational therapy of SDS and PLGA/SCs based tissue engineering on peripheral nerve regeneration based on the rat model of nerve injury by sciatic transection. The results showed that SDS dramatically enhanced the proliferation and function of SCs. The underlying mechanism may be that SDS affects SCs growth through the modulation of neurotrophic factors (BDNF, GDNF and CNTF). 12 weeks after implantation with a 12 mm gap of sciatic nerve injury, SDS-PLGA/SCs achieved satisfying outcomes of nerve regeneration, as evidenced by morphological and functional improvements upon therapy by SDS, PLGA/SCs or direct suture group assessed by sciatic function index, nerve conduction assay, HE staining and immunohistochemical analysis. Our results demonstrated the significant role of introducing SDS into neural tissue engineering to promote nerve regeneration.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongkui Wang ◽  
Ping Zhang ◽  
Jun Yu ◽  
Fuchao Zhang ◽  
Wenzhao Dai ◽  
...  

AbstractSchwann cells experience de-differentiation, proliferation, migration, re-differentiation and myelination, and participate in the repair and regeneration of injured peripheral nerves. Our previous sequencing analysis suggested that the gene expression level of matrix metalloproteinase 7 (MMP7), a Schwann cell-secreted proteolytic enzyme, was robustly elevated in rat sciatic nerve segments after nerve injury. However, the biological roles of MMP7 are poorly understood. Here, we exposed primary cultured Schwann cells with MMP7 recombinant protein and transfected siRNA against MMP7 into Schwann cells to examine the effect of exogenous and endogenous MMP7. Meanwhile, the effects of MMP7 in nerve regeneration after sciatic nerve crush in vivo were observed. Furthermore, RNA sequencing and bioinformatic analysis of Schwann cells were conducted to show the molecular mechanism behind the phenomenon. In vitro studies showed that MMP7 significantly elevated the migration rate of Schwann cells but did not affect the proliferation rate of Schwann cells. In vivo studies demonstrated that increased level of MMP7 contributed to Schwann cell migration and myelin sheaths formation after peripheral nerve injury. MMP7-mediated genetic changes were revealed by sequencing and bioinformatic analysis. Taken together, our current study demonstrated the promoting effect of MMP7 on Schwann cell migration and peripheral nerve regeneration, benefited the understanding of cellular and molecular mechanisms underlying peripheral nerve injury, and thus might facilitate the treatment of peripheral nerve regeneration in clinic.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hui Liu ◽  
Peizhen Lv ◽  
Yongjia Zhu ◽  
Huayu Wu ◽  
Kun Zhang ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2008 ◽  
Vol 23 (4) ◽  
pp. 364-371 ◽  
Author(s):  
Camila Maria Beder Ribeiro ◽  
Belmiro Cavalcanti do Egito Vasconcelos ◽  
Joaquim Celestino da Silva Neto ◽  
Valdemiro Amaro da Silva Júnior ◽  
Nancy Gurgel Figueiredo

PURPOSE: To analyze the action of gangliosides in peripheral nerve regeneration in the sciatic nerve of the rat. METHODS: The sample was composed of 96 male Wistar rats. The animals were anaesthetized and, after identification of the anaesthesic plane, an incision was made in the posterior region of the thigh, followed by skin and muscle divulsion. The right sciatic nerve was isolated and compressed for 2 minutes. Continuous suture of the skin was performed. The animals were randomly divided into two groups: the experimental group (EG), which received subcutaneous injection of gangliosides, and the control group (CG), which received saline solution (0.9%) to mimic the effects of drug administration. RESULTS: No differences were observed between the experimental and control groups evaluated on the eighth day of observation. At 15 and 30 days the EG showed an decrease in Schwann cell activity and an apparent improvement in fibre organization; at 60 days, there was a slight presence of Schwann cells in the endoneural space and the fibres were organized, indicating nerve regeneration. At 15 and 30 days, the level of cell reaction in the CG had diminished, but there were many cells with cytoplasm in activity and in mitosis; at 60 days, hyperplastic Schwann cells and mitotic activity were again observed, as well as nerve regeneration, but to a lesser extent than in the EG. CONCLUSION: The administration of exogenous gangliosides seems to improve nerve regeneration.


2018 ◽  
Vol 6 (5) ◽  
pp. 1059-1075 ◽  
Author(s):  
C. R. Carvalho ◽  
S. Wrobel ◽  
C. Meyer ◽  
C. Brandenberger ◽  
I. F. Cengiz ◽  
...  

This experimental work considers the innovative use of the biomaterial Gellan Gum (GG) as a luminal filler for nerve guidance channels.


2013 ◽  
Vol 41 (04) ◽  
pp. 865-885 ◽  
Author(s):  
Sheng-Chi Lee ◽  
Chin-Chuan Tsai ◽  
Chun-Hsu Yao ◽  
Yuan-Man Hsu ◽  
Yueh-Sheng Chen ◽  
...  

The present study provides in vitro and in vivo evaluation of arecoline on peripheral nerve regeneration. In the in vitro study, we found that arecoline at 50 μg/ml could significantly promote the survival and outgrowth of cultured Schwann cells as compared to the controls treated with culture medium only. In the in vivo study, we evaluated peripheral nerve regeneration across a 10-mm gap in the sciatic nerve of the rat, using a silicone rubber nerve chamber filled with the arecoline solution. In the control group, the chambers were filled with normal saline only. At the end of the fourth week, morphometric data revealed that the arecoline-treated group at 5 μg/ml significantly increased the number and the density of myelinated axons as compared to the controls. Immunohistochemical staining in the arecoline-treated animals at 5 μg/ml also showed their neural cells in the L4 and L5 dorsal root ganglia ipsilateral to the injury were strongly retrograde-labeled with fluorogold and lamina I–II regions in the dorsal horn ipsilateral to the injury were significantly calcitonin gene-related peptide-immunolabeled compared with the controls. In addition, we found that the number of macrophages recruited in the distal sciatic nerve was increased as the concentration of arecoline was increased. Electrophysiological measurements showed the arecoline-treated groups at 5 and 50 μg/ml had a relatively larger nerve conductive velocity of the evoked muscle action potentials compared to the controls. These results indicate that arecoline could stimulate local inflammatory conditions, improving the recovery of a severe peripheral nerve injury.


2021 ◽  
Vol 14 ◽  
Author(s):  
Bo Jia ◽  
Wei Huang ◽  
Yu Wang ◽  
Peng Zhang ◽  
Zhiwei Wang ◽  
...  

While Nogo protein demonstrably inhibits nerve regeneration in the central nervous system (CNS), its effect on Schwann cells in peripheral nerve repair and regeneration following sciatic nerve injury remains unknown. In this research, We assessed the post-injury expression of Nogo-C in an experimental mouse model of sciatic nerve-crush injury. Nogo-C knockout (Nogo-C–/–) mouse was generated to observe the effect of Nogo-C on sciatic nerve regeneration, Schwann cell apoptosis, and myelin disintegration after nerve injury, and the effects of Nogo-C on apoptosis and dedifferentiation of Schwann cells were observed in vitro. We found that the expression of Nogo-C protein at the distal end of the injured sciatic nerve increased in wild type (WT) mice. Compared with the injured WT mice, the proportion of neuronal apoptosis was significantly diminished and the myelin clearance rate was significantly elevated in injured Nogo-C–/– mice; the number of nerve fibers regenerated and the degree of myelination were significantly elevated in Nogo-C–/– mice on Day 14 after injury. In addition, the recovery of motor function was significantly accelerated in the injured Nogo-C–/– mice. The overexpression of Nogo-C in primary Schwann cells using adenovirus-mediated gene transfer promoted Schwann cells apoptosis. Nogo-C significantly reduced the ratio of c-Jun/krox-20 expression, indicating its inhibition of Schwann cell dedifferentiation. Above all, we hold the view that the expression of Nogo-C increases following peripheral nerve injury to promote Schwann cell apoptosis and inhibit Schwann cell dedifferentiation, thereby inhibiting peripheral nerve regeneration.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1366 ◽  
Author(s):  
Benedetta E. Fornasari ◽  
Marwa El Soury ◽  
Giulia Nato ◽  
Alessia Fucini ◽  
Giacomo Carta ◽  
...  

Conduits for the repair of peripheral nerve gaps are a good alternative to autografts as they provide a protected environment and a physical guide for axonal re-growth. Conduits require colonization by cells involved in nerve regeneration (Schwann cells, fibroblasts, endothelial cells, macrophages) while in the autograft many cells are resident and just need to be activated. Since it is known that soluble Neuregulin1 (sNRG1) is released after injury and plays an important role activating Schwann cell dedifferentiation, its expression level was investigated in early regeneration steps (7, 14, 28 days) inside a 10 mm chitosan conduit used to repair median nerve gaps in Wistar rats. In vivo data show that sNRG1, mainly the isoform α, is highly expressed in the conduit, together with a fibroblast marker, while Schwann cell markers, including NRG1 receptors, were not. Primary culture analysis shows that nerve fibroblasts, unlike Schwann cells, express high NRG1α levels, while both express NRG1β. These data suggest that sNRG1 might be mainly expressed by fibroblasts colonizing nerve conduit before Schwann cells. Immunohistochemistry analysis confirmed NRG1 and fibroblast marker co-localization. These results suggest that fibroblasts, releasing sNRG1, might promote Schwann cell dedifferentiation to a “repair” phenotype, contributing to peripheral nerve regeneration.


2004 ◽  
Vol 101 (5) ◽  
pp. 806-812 ◽  
Author(s):  
Toshiro Mimura ◽  
Mari Dezawa ◽  
Hiroshi Kanno ◽  
Hajime Sawada ◽  
Isao Yamamoto

Object. Bone marrow stromal cells (BMSCs) can be induced to form Schwann cells by sequentially treating the cells with β-mercaptoethanol and retinoic acid, followed by forskolin and neurotrophic factors including heregulin. In this study the authors made artificial grafts filled with BMSC-derived Schwann cells (BMSC-DSCs) and transplanted them into the transected sciatic nerve in adult rats to evaluate the potential of BMSCs as a novel alternative method of peripheral nerve regeneration. Methods. The BMSC-DSCs were suspended in Matrigel and transferred into hollow fibers (12 mm in length), which were transplanted into the transected sciatic nerve in adult Wistar rats. Six months after cell transplantation, electrophysiological evaluation and walking track analysis were performed. Results of these studies showed significant improvement in motor nerve conduction velocity and sciatic nerve functional index in the BMSC-DSC—transplanted group compared with the control group (Matrigel graft only). Immunohistochemical study data demonstrated that transplanted BMSCs labeled with retrovirus green fluorescent protein were positive for P0 and myelin-associated glycoprotein and had reconstructed nodes of Ranvier and remyelinated regenerated nerve axons. The number of regenerated axons in the axial section of the central portion of the graft was significantly greater in the transplanted group. Although BMSCs can differentiate into several types of cells, tumor formation did not occur 6 months after engraftment. Conclusions. Results in this study indicate that BMSC-DSCs have great potential to promote regeneration of peripheral nerves. The artificial graft made with BMSC-DSCs represents an alternative method for the difficult reconstruction of a long distance gap in a peripheral nerve.


Sign in / Sign up

Export Citation Format

Share Document