CYBERSECURITY ARCHITECTURE FOR THE INTERNET OF MEDICAL THINGS AND CONNECTED DEVICES USING BLOCKCHAIN

Author(s):  
Muhammad Elsayeh ◽  
Kadry Ali Ezzat ◽  
Hany El-Nashar ◽  
Lamia Nabil Omran

The internet of medical things (IoMT) has a great role in improving the health around the world. IoMT is having a great impact in our life in which the clinical data of the patient is observed and checked and then can be transferred to the third party for using in the future such as the cloud. IoMT is a huge data system with a continuous developing rate, which implies that we should keep a lot of data secure. We propose a combined security architecture that fuses the standard architecture and new blockchain technology. Blockchain is a temper digital ledger which gives peer-to-peer communication and provides communication between non-trust individuals. Using standard in-depth strategy and blockchain, we are able to develop a method to collect vital signs data from IoMT and connected devices and use blockchain to store and retrieve the collected data in a secure and decentralized fashion within a closed system, suitable for healthcare providers such as private clinics, hospitals, and healthcare organizations were sharing data with each other is required. Right now initially examine the innovation behind Blockchain then propose IoMT-based security architecture utilizing Blockchain to guarantee the security of information transmission between associated nodes. Experimental analysis shows that the proposed scheme presents a non-significant overhead; yet it brings major advantages to meet the standard security and privacy requirements in IoMT.

Connectivity ◽  
2020 ◽  
Vol 148 (6) ◽  
Author(s):  
S. A. Zhezhkun ◽  
◽  
L. B. Veksler ◽  
S. M. Brezitsʹkyy ◽  
B. O. Tarasyuk

This article focuses on the analysis of promising technologies for long-range traffic transmission for the implementation of the Internet of Things. The result of the review of technical features of technologies, their advantages and disadvantages is given. A comparative analysis was performed. An analysis is made that in the future heterogeneous structures based on the integration of many used radio technologies will play a crucial role in the implementation of fifth generation networks and systems. The Internet of Things (IoT) is heavily affecting our daily lives in many domains, ranging from tiny wearable devices to large industrial systems. Consequently, a wide variety of IoT applications have been developed and deployed using different IoT frameworks. An IoT framework is a set of guiding rules, protocols, and standards which simplify the implementation of IoT applications. The success of these applications mainly depends on the ecosystem characteristics of the IoT framework, with the emphasis on the security mechanisms employed in it, where issues related to security and privacy are pivotal. In this paper, we survey the security of the main IoT frameworks, a total of 8 frameworks are considered. For each framework, we clarify the proposed architecture, the essentials of developing third-party smart apps, the compatible hardware, and the security features. Comparing security architectures shows that the same standards used for securing communications, whereas different methodologies followed for providing other security properties.


Author(s):  
Aswini R. ◽  
Padmapriya N.

Blockchain is a distributed ledger with the ability of keeping up the uprightness of exchanges by decentralizing the record among participating clients. The key advancement is that it enables its users to exchange resources over the internet without the requirement for a centralised third party. Also, each 'block' is exceptionally associated with the past blocks by means of digital signature which implies that creation a change to a record without exasperating the previous records in the chain is beyond the realm of imagination, in this way rendering the data tamper-proof. A semantic layer based upon a blockchain framework would join the advantages of adaptable administration disclosure and approval by consensus. This chapter examines the engineering supporting the blockchain and portrays in detail how the information distribution is done, the structure of the block itself, the job of the block header, the block identifier, and the idea of the Genesis block.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2013
Author(s):  
Shams Ud Din ◽  
Zahoor Jan ◽  
Muhammad Sajjad ◽  
Maqbool Hussain ◽  
Rahman Ali ◽  
...  

Security and privacy are essential requirements, and their fulfillment is considered one of the most challenging tasks for healthcare organizations to manage patient data using electronic health records. Electronic health records (clinical notes, images, and documents) become more vulnerable to breaching patients’ privacy when shared with an external organization in the current arena of the internet of medical things (IoMT). Various watermarking techniques were introduced in the medical field to secure patients’ data. Most of the existing techniques focus on an image or document’s imperceptibility without considering the watermark(logo). In this research, a novel technique of watermarking is introduced, which supersedes the shortcomings of existing approaches. It guarantees the imperceptibility of the image/document and takes care of watermark(biometric), which is further passed through a process of recognition for claiming ownership. It extracts suitable frequencies from the transform domain using specialized filters to increase the robustness level. The extracted frequencies are modified by adding the biomedical information while considering the strength factor according to the human visual system. The watermarked frequencies are further decomposed through a singular value decomposition technique to increase payload capacity up to (256 × 256). Experimental results over a variety of medical and official images demonstrate the average peak signal-to-noise ratio (PSNR 54.43), and the normal correlation (N.C.) value is 1. PSNR and N.C. of the watermark were calculated after attacks. The proposed technique is working in real-time for embedding, extraction, and recognition of biometrics over the internet, and its uses can be realized in various platforms of IoMT technologies.


Author(s):  
George Hatzivasilis ◽  
Othonas Soultatos ◽  
Sotiris Ioannidis ◽  
Christos Verikoukis ◽  
Giorgos Demetriou ◽  
...  

2013 ◽  
Vol 401-403 ◽  
pp. 1792-1795 ◽  
Author(s):  
Tao Liu ◽  
Ya Wen Guan ◽  
Yi Qun Yan ◽  
Li Liu ◽  
Qi Chao Deng

Aimed to the security and privacy issues which restrict the construction and development of the Internet of Things, a WSN-oriented key agreement protocol in the Internet of Things ( IOT) has been proposed . Trust management was introduced the security mechanism of IOT, the use of bilinear pairing technology, the identity-based key agreement was realized. Using the protocol not only can effectively prevent attacks from outside the network and can recognize the abnormal nodes which were captured or lapsed efficacy. Thus it can reduce communication with abnormal nodes to improve network security, extending the lifetime of the network. The distributed self-organizing key negotiation process without credible third-party management can enhance the survivability of IOT, and the network has a good scalability.


Blockchain refers to a distributed ledger technology that represents an innovation in recording and sharing information without the need for a trusted third party. Blockchain technology offers new tools for security and privacy concerns. Marching towards digitization and analytics, this technology emerges as a promising solution for authentication and authorization issues. It sounds so amazing that this technology that originated with cryptocurrencies could not only be applied in digital contracts, financial and public records, and property ownership but also in medicine, education, science and so on. The use case of this technology springs up in every possible direction. This article first analyses the need for this breakthrough technology and explains how this technology works. This work presents a review on various types of blockchain, the consensus mechanisms used, their advantages and limitations. It provides an overview on the various use cases of this technology. This work mainly focuses on its application in Healthcare. The goal of this article is to analyze the usage of Blockchain technology in various fields of Healthcare such as Electronic Health Record, Health Insurance, Biomedical Research, Drug Supply, Medical Education, Remote Patient Monitoring, Interoperability, Location Sharing etc., It investigates the current research trends and finds the gaps and limitations of these approaches. Moreover, it proposes some enhancements to fill in the gaps in the present approach. This work also analyses the importance of Wearable Internet of Things (IoT) devices in HealthCare and the integration of these devices with Blockchain. Finally, this work concludes by comparing Blockchain 3.0 with previous versions.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Maria-Dolores Cano ◽  
Antonio Cañavate-Sanchez

The disclosure of personal and private information is one of the main challenges of the Internet of Medical Things (IoMT). Most IoMT-based services, applications, and platforms follow a common architecture where wearables or other medical devices capture data that are forwarded to the cloud. In this scenario, edge computing brings new opportunities to enhance the operation of IoMT. However, despite the benefits, the inherent characteristics of edge computing require countermeasures to address the security and privacy issues that IoMT gives rise to. The restrictions of IoT devices in terms of battery, memory, hardware resources, or computing capabilities have led to a common agreement for the use of elliptic curve cryptography (ECC) with hardware or software implementations. As an example, the elliptic curve digital signature algorithm (ECDSA) is widely used by IoT devices to compute digital signatures. On the other hand, it is well known that dual signature has been an effective method to provide consumer privacy in classic e-commerce services. This article joins both approaches. It presents a novel solution to enhanced security and the preservation of data privacy in communications between IoMT devices and the cloud via edge computing devices. While data source anonymity is achieved from the cloud perspective, integrity and origin authentication of the collected data is also provided. In addition, computational requirements and complexity are kept to a minimum.


2012 ◽  
Vol 6 (4) ◽  
pp. 40-54 ◽  
Author(s):  
Francis Akowuah ◽  
Xiaohong Yuan ◽  
Jinsheng Xu ◽  
Hong Wang

As healthcare organizations and their business associates operate in an increasingly complex technological world, there exist security threats and attacks which render individually identifiable health information vulnerable. In United States, a number of laws exist to ensure that healthcare providers take practical measures to address the security and privacy needs of health information. This paper provides a survey of U.S. laws related to health information security and privacy, which include Health Insurance Portability and Accountability Act (HIPAA),Gramm-Leach-Bliley Act, Sarbanes-Oxley Act of 2002, Patient Safety and Quality Improvement Act of 2005, and Health Information Technology for Economic and Clinical Health (HITECH).The history and background of the laws, highlights of what the laws require, and the challenges organizations face in complying with the laws are discussed.


Sign in / Sign up

Export Citation Format

Share Document