scholarly journals A Research on impact of Blockchain in Healthcare

Blockchain refers to a distributed ledger technology that represents an innovation in recording and sharing information without the need for a trusted third party. Blockchain technology offers new tools for security and privacy concerns. Marching towards digitization and analytics, this technology emerges as a promising solution for authentication and authorization issues. It sounds so amazing that this technology that originated with cryptocurrencies could not only be applied in digital contracts, financial and public records, and property ownership but also in medicine, education, science and so on. The use case of this technology springs up in every possible direction. This article first analyses the need for this breakthrough technology and explains how this technology works. This work presents a review on various types of blockchain, the consensus mechanisms used, their advantages and limitations. It provides an overview on the various use cases of this technology. This work mainly focuses on its application in Healthcare. The goal of this article is to analyze the usage of Blockchain technology in various fields of Healthcare such as Electronic Health Record, Health Insurance, Biomedical Research, Drug Supply, Medical Education, Remote Patient Monitoring, Interoperability, Location Sharing etc., It investigates the current research trends and finds the gaps and limitations of these approaches. Moreover, it proposes some enhancements to fill in the gaps in the present approach. This work also analyses the importance of Wearable Internet of Things (IoT) devices in HealthCare and the integration of these devices with Blockchain. Finally, this work concludes by comparing Blockchain 3.0 with previous versions.

Author(s):  
Jatin Pahuja and Dr. Neha Agrawal

On a daily basis we deal with documents like educational records, health records, certificates etc. Medical records are still being stored on legacy systems which carries the risk of losing important documents. There are security and privacy concerns regarding the safety of documents on centralized server. To overcome these difficulties, we made a blockchain based record storage web app through which anyone upload their medical records on the blockchain and can access them with a private key. The patient or the user can download and access reports from anywhere and can also manage to share them with his doctor etc. Blockchain is a decentralized, distributed, peer to peer ledger on the internet. Blockchain technology helps to maintain security and reliability without placing any trust in a third party. The use of smart contracts in blockchain helps in making things much easier. This paper examines the record storage system including the technologies involved and the methodologies. The approach used for making an electronic health record storage web app through which we can implement a more broader record storage system that can store and manage numerous types of records.


2020 ◽  
Vol 12 (17) ◽  
pp. 6960 ◽  
Author(s):  
Muhammad Tahir ◽  
Muhammad Sardaraz ◽  
Shakoor Muhammad ◽  
Muhammad Saud Khan

Blockchain and IoT are being deployed at a large scale in various fields including healthcare for applications such as secure storage, transactions, and process automation. IoT devices are resource-constrained, have no capability of security and self-protection, and can easily be hacked or compromised. Furthermore, Blockchain is an emerging technology with immutability features which provide secure management, authentication, and guaranteed access control to IoT devices. IoT is a cloud-based internet service in which processing and collection of user’s data are accomplished remotely. Smart healthcare also requires the facility to provide the diagnosis of patients located remotely. The smart health framework faces critical issues such as data security, costs, memory, scalability, trust, and transparency between different platforms. Therefore, it is important to handle data integrity and privacy as the user’s authenticity is in question due to an open internet environment. Several techniques are available that primarily focus on resolving security issues i.e., forgery, timing, denial of service and stolen smartcard attacks, etc. Blockchain technology follows the rules of absolute privacy to identify the users associated with transactions. The motivation behind the use of Blockchain in health informatics is the removal of the centralized third party, immutability, improved data sharing, enhanced security, and reduced overhead costs in distributed applications. Healthcare informatics has some specific requirements associated with the security and privacy along with the additional legal requirements. This paper presents a novel authentication and authorization framework for Blockchain-enabled IoT networks using a probabilistic model. The proposed framework makes use of random numbers in the authentication process which is further connected through joint conditional probability. Hence, it establishes a secure connection among IoT devices for further data acquisition. The proposed model is validated and evaluated through extensive simulations using the AVISPA tool and the Cooja simulator, respectively. Experimental results analyses show that the proposed framework provides robust mutual authenticity, enhanced access control, and lowers both the communication and computational overhead cost as compared to others.


Author(s):  
Muhammad Elsayeh ◽  
Kadry Ali Ezzat ◽  
Hany El-Nashar ◽  
Lamia Nabil Omran

The internet of medical things (IoMT) has a great role in improving the health around the world. IoMT is having a great impact in our life in which the clinical data of the patient is observed and checked and then can be transferred to the third party for using in the future such as the cloud. IoMT is a huge data system with a continuous developing rate, which implies that we should keep a lot of data secure. We propose a combined security architecture that fuses the standard architecture and new blockchain technology. Blockchain is a temper digital ledger which gives peer-to-peer communication and provides communication between non-trust individuals. Using standard in-depth strategy and blockchain, we are able to develop a method to collect vital signs data from IoMT and connected devices and use blockchain to store and retrieve the collected data in a secure and decentralized fashion within a closed system, suitable for healthcare providers such as private clinics, hospitals, and healthcare organizations were sharing data with each other is required. Right now initially examine the innovation behind Blockchain then propose IoMT-based security architecture utilizing Blockchain to guarantee the security of information transmission between associated nodes. Experimental analysis shows that the proposed scheme presents a non-significant overhead; yet it brings major advantages to meet the standard security and privacy requirements in IoMT.


Author(s):  
V. Jeevika Tharini ◽  
S. Vijayarani

One of the best-known features of IoT is automation. Because of this, IoT is a much-needed field for many applications, namely emergency and healthcare domains. IoT has made many revolutionary changes in the healthcare industry. IoT paves the way to numerous advancements for healthcare. The possibilities of IoT have reached their peak in the commercial industry and health sector. In recent years, serious concerns have been raised over the control and access of one's individual information. Privacy and security of the IoT devices can be compromised by intruders. Apart from the numerous benefits of IoTs, there are several security and privacy concerns to consider. A brief overview of different kinds of security attacks, solution for the attacks, privacy and security issues are discussed in this chapter.


2022 ◽  
pp. 89-103
Author(s):  
Subashini B.

Blockchain and the internet of things (IoT) are progressive technologies that are changing the world with additional special care within the healthcare system. In healthcare, IoT is a remote patient monitoring system that allows IoT devices to collect patient information such as remote monitoring, test results, pharmacy detailsm and medical insurance details, and allows doctors to provide excellent care. In order to facilitate data sharing among different hospitals and other organizations, it is necessary to secure data with caution. Blockchain is a decentralized, distributed, and an immutable digital ledger that records healthcare transactions using peer-to-peer technology in an extremely secure manner. It uses the cloud environment to store the huge amount of data on healthcare. The data generated from IoT devices uses blockchain technology to share medical information being analyzed by healthcare professionals in different hospitals in a secure manner. The objective is to benefit patient monitoring remotely and overcome the problem of information blocking.


Author(s):  
P.Chinnasamy Et al.

The evolving agricultural technologies used mostly for remote access and modernization in farming connected via the Internet of Things (IoT) have been grown rapidly. However because of the wide size of all its broadcaster's propagandizing existence, it has some significant concerns with respect to security and privacy. We utilize blockchain to address such security breaches, allowing the development of a decentralized distributed blockchain system that's also exchanged between the IoT cluster heads. This article's major focus is provide smart greenhouse farmlands with a portable blockchain-based infrastructure which offers integrity and confidentiality. Where, green-house IoT sensor nodes are function as a blockchain centrally controlled to optimize the energy consumption by utilizing secure immutable ledgers. Furthermore, we present a significant solution that integrates blockchain technology via IoT devices to offer Smart Greenhouse cultivation with an enhanced secure communication.


Author(s):  
Monika Parmar, Et. al.

Blockchain technology, which would be the underlying technology, has recently become very popular with the increase in cryptocurrencies and is being used in IoT and other fields. There have been shortfalls, however, which impede its implementation, including the volume of space. Transactions will be produced at a significant level due to the huge amount of Connected systems that often work in many networks as data processors. In IoT, the storage issue will become more intense. Current storing data platforms have a wide range of features to respond to an extensive variety spectrum of uses. Nevertheless, new groups of systems have arisen, e.g., blockchain with data version control, fork semantics, tamper-evidence or some variation thereof, and distributed analysis. They're showing new challenges for storage solutions to effectively serve such energy storage Systems by integrating the criteria mentioned in the processing. This paper discusses the potential security and privacy concerns of IoT applications and also it is shown that in first step the storage is enhanced by 50% and further in the next step, it is improved and it takes only 256 bytes irrespective of the input data size.


2021 ◽  
Vol 13 (11) ◽  
pp. 291
Author(s):  
Qian Qu ◽  
Ronghua Xu ◽  
Yu Chen ◽  
Erik Blasch ◽  
Alexander Aved

Blockchain technology has been recognized as a promising solution to enhance the security and privacy of Internet of Things (IoT) and Edge Computing scenarios. Taking advantage of the Proof-of-Work (PoW) consensus protocol, which solves a computation intensive hashing puzzle, Blockchain ensures the security of the system by establishing a digital ledger. However, the computation intensive PoW favors members possessing more computing power. In the IoT paradigm, fairness in the highly heterogeneous network edge environments must consider devices with various constraints on computation power. Inspired by the advanced features of Digital Twins (DT), an emerging concept that mirrors the lifespan and operational characteristics of physical objects, we propose a novel Miner Twins (MinT) architecture to enable a fair PoW consensus mechanism for blockchains in IoT environments. MinT adopts an edge-fog-cloud hierarchy. All physical miners of the blockchain are deployed as microservices on distributed edge devices, while fog/cloud servers maintain digital twins that periodically update miners’ running status. By timely monitoring of a miner’s footprint that is mirrored by twins, a lightweight Singular Spectrum Analysis (SSA)-based detection achieves the identification of individual misbehaved miners that violate fair mining. Moreover, we also design a novel Proof-of-Behavior (PoB) consensus algorithm to detect dishonest miners that collude to control a fair mining network. A preliminary study is conducted on a proof-of-concept prototype implementation, and experimental evaluation shows the feasibility and effectiveness of the proposed MinT scheme under a distributed byzantine network environment.


2021 ◽  
Vol 13 (16) ◽  
pp. 9008
Author(s):  
Yahia Baashar ◽  
Gamal Alkawsi ◽  
Ammar Ahmed Alkahtani ◽  
Wahidah Hashim ◽  
Rina Azlin Razali ◽  
...  

Energy management and exchange have increasingly shifted from concentrated to hierarchical modes. Numerous issues have arisen in the decentralized energy sector, including the storage of customer data and the need to ensure data integrity, fairness, and accountability in the transaction phase. The problem is that in the field of the innovative technology of blockchain and its applications, with the energy sector still in the developmental stages, there is still a need for more research to understand the full capacity of the technology in the field. The main aim of this work was to investigate the state of the current research of blockchain technologies as well as their application within the field of energy. This work also set out to identify certain research gaps and provide a set of recommendations for future directions. Among these research gaps is the application of blockchain in decentralized storage, the integration of blockchain with artificial intelligence, and security and privacy concerns, which have not received much attention despite their importance. An analysis of fifty-seven carefully reviewed studies revealed that the emerging blockchain which provides privacy-protection technologies in cryptography and other areas that can be integrated to address users’ privacy concerns is another aspect that needs further investigation. Grid operations, economies, and customers will all learn from blockchain technology as it provides disintermediation, confidentiality, and tamper-proof transfers. Moreover, it provides innovative ways for customers and small solar generators to participate more actively in the electricity sector and to benefit from their properties. Blockchains are a rapidly evolving field of research and growth. A study of this emerging technology is necessary to increase comprehension, to educate the body of expertise on blockchains, and to realize its potential. This study recommends that future work investigates the potential application of blockchain in the energy sector as well as the challenges that face its implementation from the perspective of policy makers. This future approach will enable researchers to direct their focus to the case studies approach, which will facilitate and ease the application of blockchain technology.


2016 ◽  
pp. 379-402 ◽  
Author(s):  
Scott Amyx

This chapter identifies concerns about, and the managerial implications of, data privacy issues related to wearables and the IoT; it also offers some enterprise solutions to the complex concerns arising from the aggregation of the massive amounts of data derived from wearables and IoT devices. Consumer and employee privacy concerns are elucidated, as are the problems facing managers as data management and security become an important part of business operations. The author provides insight into how companies are currently managing data as well as some issues related to data security and privacy. A number of suggestions for improving the approach to data protection and addressing concerns about privacy are included. This chapter also examines trending issues in the areas of data protection and the IoT, and contains thought-provoking discussion questions pertaining to business, wearables/IoT data, and privacy issues.


Sign in / Sign up

Export Citation Format

Share Document