Local Constraints for the Perception of Binocular 3D Motion

Author(s):  
Martin Lages ◽  
Suzanne Heron ◽  
Hongfang Wang

The authors discuss local constraints for the perception of three-dimensional (3D) binocular motion in a geometric-probabilistic framework. It is shown that Bayesian models of binocular 3D motion can explain perceptual bias under uncertainty and predict perceived velocity under ambiguity. The models exploit biologically plausible constraints of local motion and disparity processing in a binocular viewing geometry. Results from computer simulations and psychophysical experiments support the idea that local constraints of motion and disparity processing are combined late in the visual processing hierarchy to establish perceived 3D motion direction.

Vision ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 64
Author(s):  
Martin Lages ◽  
Suzanne Heron

Like many predators, humans have forward-facing eyes that are set a short distance apart so that an extensive region of the visual field is seen from two different points of view. The human visual system can establish a three-dimensional (3D) percept from the projection of images into the left and right eye. How the visual system integrates local motion and binocular depth in order to accomplish 3D motion perception is still under investigation. Here, we propose a geometric-statistical model that combines noisy velocity constraints with a spherical motion prior to solve the aperture problem in 3D. In two psychophysical experiments, it is shown that instantiations of this model can explain how human observers disambiguate 3D line motion direction behind a circular aperture. We discuss the implications of our results for the processing of motion and dynamic depth in the visual system.


2009 ◽  
Vol 5 (2) ◽  
pp. 270-273 ◽  
Author(s):  
Szonya Durant ◽  
Johannes M Zanker

Illusory position shifts induced by motion suggest that motion processing can interfere with perceived position. This may be because accurate position representation is lost during successive visual processing steps. We found that complex motion patterns, which can only be extracted at a global level by pooling and segmenting local motion signals and integrating over time, can influence perceived position. We used motion-defined Gabor patterns containing motion-defined boundaries, which themselves moved over time. This ‘motion-defined motion’ induced position biases of up to 0.5°, much larger than has been found with luminance-defined motion. The size of the shift correlated with how detectable the motion-defined motion direction was, suggesting that the amount of bias increased with the magnitude of this complex directional signal. However, positional shifts did occur even when participants were not aware of the direction of the motion-defined motion. The size of the perceptual position shift was greatly reduced when the position judgement was made relative to the location of a static luminance-defined square, but not eliminated. These results suggest that motion-induced position shifts are a result of general mechanisms matching dynamic object properties with spatial location.


2018 ◽  
Vol 30 (12) ◽  
pp. 3355-3392 ◽  
Author(s):  
Jonathan Vacher ◽  
Andrew Isaac Meso ◽  
Laurent U. Perrinet ◽  
Gabriel Peyré

A common practice to account for psychophysical biases in vision is to frame them as consequences of a dynamic process relying on optimal inference with respect to a generative model. The study presented here details the complete formulation of such a generative model intended to probe visual motion perception with a dynamic texture model. It is derived in a set of axiomatic steps constrained by biological plausibility. We extend previous contributions by detailing three equivalent formulations of this texture model. First, the composite dynamic textures are constructed by the random aggregation of warped patterns, which can be viewed as three-dimensional gaussian fields. Second, these textures are cast as solutions to a stochastic partial differential equation (sPDE). This essential step enables real-time, on-the-fly texture synthesis using time-discretized autoregressive processes. It also allows for the derivation of a local motion-energy model, which corresponds to the log likelihood of the probability density. The log likelihoods are essential for the construction of a Bayesian inference framework. We use the dynamic texture model to psychophysically probe speed perception in humans using zoom-like changes in the spatial frequency content of the stimulus. The human data replicate previous findings showing perceived speed to be positively biased by spatial frequency increments. A Bayesian observer who combines a gaussian likelihood centered at the true speed and a spatial frequency dependent width with a “slow-speed prior” successfully accounts for the perceptual bias. More precisely, the bias arises from a decrease in the observer's likelihood width estimated from the experiments as the spatial frequency increases. Such a trend is compatible with the trend of the dynamic texture likelihood width.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jinglin Li ◽  
Miriam Niemeier ◽  
Roland Kern ◽  
Martin Egelhaaf

Motion adaptation has been attributed in flying insects a pivotal functional role in spatial vision based on optic flow. Ongoing motion enhances in the visual pathway the representation of spatial discontinuities, which manifest themselves as velocity discontinuities in the retinal optic flow pattern during translational locomotion. There is evidence for different spatial scales of motion adaptation at the different visual processing stages. Motion adaptation is supposed to take place, on the one hand, on a retinotopic basis at the level of local motion detecting neurons and, on the other hand, at the level of wide-field neurons pooling the output of many of these local motion detectors. So far, local and wide-field adaptation could not be analyzed separately, since conventional motion stimuli jointly affect both adaptive processes. Therefore, we designed a novel stimulus paradigm based on two types of motion stimuli that had the same overall strength but differed in that one led to local motion adaptation while the other did not. We recorded intracellularly the activity of a particular wide-field motion-sensitive neuron, the horizontal system equatorial cell (HSE) in blowflies. The experimental data were interpreted based on a computational model of the visual motion pathway, which included the spatially pooling HSE-cell. By comparing the difference between the recorded and modeled HSE-cell responses induced by the two types of motion adaptation, the major characteristics of local and wide-field adaptation could be pinpointed. Wide-field adaptation could be shown to strongly depend on the activation level of the cell and, thus, on the direction of motion. In contrast, the response gain is reduced by local motion adaptation to a similar extent independent of the direction of motion. This direction-independent adaptation differs fundamentally from the well-known adaptive adjustment of response gain according to the prevailing overall stimulus level that is considered essential for an efficient signal representation by neurons with a limited operating range. Direction-independent adaptation is discussed to result from the joint activity of local motion-sensitive neurons of different preferred directions and to lead to a representation of the local motion direction that is independent of the overall direction of global motion.


Author(s):  
Morteza Vatani ◽  
Faez Alkadi ◽  
Jae-Won Choi

A novel additive manufacturing algorithm was developed to increase the consistency of three-dimensional (3D) printed curvilinear or conformal patterns on freeform surfaces. The algorithm dynamically and locally compensates the nozzle location with respect to the pattern geometry, motion direction, and topology of the substrate to minimize lagging or leading during conformal printing. The printing algorithm was implemented in an existing 3D printing system that consists of an extrusion-based dispensing module and an XYZ-stage. A dispensing head is fixed on a Z-axis and moves vertically, while the substrate is installed on an XY-stage and moves in the x–y plane. The printing algorithm approximates the printed pattern using nonuniform rational B-spline (NURBS) curves translated directly from a 3D model. Results showed that the proposed printing algorithm increases the consistency in the width of the printed patterns. It is envisioned that the proposed algorithm can facilitate nonplanar 3D printing using common and commercially available Cartesian-type 3D printing systems.


Author(s):  
Ciprian Borcea ◽  
Ileana Streinu

We formulate a mathematical theory of auxetic behaviour based on one-parameter deformations of periodic frameworks. Our approach is purely geome- tric, relies on the evolution of the periodicity lattice and works in any dimension. We demonstrate its usefulness by predicting or recognizing, without experiment, computer simulations or numerical approximations, the auxetic capabilities of several well-known structures available in the literature. We propose new principles of auxetic design and rely on the stronger notion of expansive behaviour to provide an infinite supply of planar auxetic mechanisms and several new three-dimensional structures.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 578 ◽  
Author(s):  
Bingrui Lv ◽  
Guilian Wang ◽  
Bin Li ◽  
Haibo Zhou ◽  
Yahui Hu

This paper describes the innovative design of a three-dimensional (3D) motion device based on a flexible mechanism, which is used primarily to produce accurate and fast micro-displacement. For example, the rapid contact and separation of the tool and the workpiece are realized by the operation of the 3D motion device in the machining process. This paper mainly concerns the device performance. A theoretical model for the static performance of the device was established using the matrix-based compliance modeling (MCM) method, and the static characteristics of the device were numerically simulated by finite element analysis (FEA). The Lagrangian principle and the finite element analysis method for device dynamics are used for prediction to obtain the natural frequency of the device. Under no-load conditions, the dynamic response performance and linear motion performance of the three directions were tested and analyzed with different input signals, and three sets of vibration trajectories were obtained. Finally, the scratching experiment was carried out. The detection of the workpiece reveals a pronounced periodic texture on the surface, which verifies that the vibration device can generate an ideal 3D vibration trajectory.


2019 ◽  
Author(s):  
Ron Dekel ◽  
Dov Sagi

AbstractFollowing exposure to an oriented stimulus, the perceived orientation is slightly shifted, a phenomenon termed the tilt aftereffect (TAE). This estimation bias, as well as other context-dependent biases, is speculated to reflect statistical mechanisms of inference that optimize visual processing. Importantly, although measured biases are extremely robust in the population, the magnitude of individual bias can be extremely variable. For example, measuring different individuals may result in TAE magnitudes that differ by a factor of 5. Such findings appear to challenge the accounts of bias in terms of learned statistics: is inference so different across individuals? Here, we found that a strong correlation exists between reaction time and TAE, with slower individuals having much less TAE. In the tilt illusion, the spatial analogue of the TAE, we found a similar, though weaker, correlation. These findings can be explained by a theory predicting that bias, caused by a change in the initial conditions of evidence accumulation (e.g., prior), decreases with decision time (Dekel & Sagi, 2019b). We contend that the context-dependence of visual processing is more homogeneous in the population than was previously thought, with the measured variability of perceptual bias explained, at least in part, by the flexibility of decision-making. Homogeneity in processing might reflect the similarity of the learned statistics.HighlightsThe tilt aftereffect (TAE) exhibits large individual differences.Reduced TAE magnitudes are found in slower individuals.Reduced TAE in slower decisions can be explained by the reduced influence of prior.Therefore, individual variability can reflect decision making flexibility.


1999 ◽  
Vol 121 (1) ◽  
pp. 182-186 ◽  
Author(s):  
O. Manca ◽  
B. Morrone ◽  
S. Nardini

A three-dimensional heat transfer model has been developed to obtain the conductive thermal field inside a brick-type solid under a moving heat source with different beam profiles. The problem in quasi-steady state has been approximated by neglecting the axial diffusion component; thus, for Peclet numbers greater than 5, the elliptic differential equation becomes a parabolic one along the motion direction. The dependence of the solution on the radiative and convective heat losses has been highlighted. Thermal fields are strongly dependent on different spot shapes and on the impinging jet; this situation allows control of the parameters involved in the technological process.


Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 1013-1023 ◽  
Author(s):  
D. A. Clausi ◽  
G. W. Brodland

Current theories about the forces that drive neurulation shape changes are evaluated using computer simulations. Custom, three-dimensional, finite element-based computer software is used. The software draws on current engineering concepts and makes it possible to construct a ‘virtual’ embryo with any user-specified mechanical properties. To test a specific hypothesis about the forces that drive neurulation, the whole virtual embryo or any selected part of it is ascribed with the force generators specified in the hypothesis. The shape changes that are produced by these forces are then observed and compared with experimental data. The simulations demonstrate that, when uniform, isotropic circumferential microfilament bundle (CMB) constriction and cephalocaudal (axial) elongation act together on a circular virtual neural plate, it becomes keyhole shaped. When these forces act on a spherical (amphibian) embryo, dorsal surface flattening occurs. Simulations of transverse sections further show that CMB constriction, acting with or without axial elongation, can produce numerous salient transverse features of neurulation. These features include the sequential formation of distinct neural ridges, narrowing and thickening of the neural plate, skewing just medial to the ridges, ‘hinge’ formation and neural tube closure. No region-specific ‘programs’ or non-mechanical cell-cell communications are used. The increase in complexity results entirely from mechanical interactions. The transverse simulations show how changes to the driving forces would affect the patterns of shape change produced. Hypotheses regarding force generation by microtubules, intercellular adhesions and forces extrinsic to the neural plate are also evaluated. The simulations show that these force-generating mechanisms do not, by themselves, produce shape changes that are consistent with normal development. The simulations support the concept of cooperation of forces and suggest that neurulation is robust because redundant force generating mechanisms exist.


Sign in / Sign up

Export Citation Format

Share Document