Nascent Access Technologies for Individuals with Severe Motor Impairments

2013 ◽  
pp. 720-739
Author(s):  
Sarah Power ◽  
Saba Moghimi ◽  
Brian Nhan ◽  
Tom Chau

As the number of individuals without physical access to communication or environmental interaction escalates, there are increasing efforts to uncover novel and unconventional access pathways. In this chapter, we introduce three emerging access technologies for individuals with severe disabilities: near-infrared spectroscopy, electroencephalographic measurement of visually-evoked potentials and infrared thermographic imaging of the face. The first two technologies harness activity directly from the brain while the third exploits spontaneous temperature changes in the face. For each technology, we discuss the physiological underpinnings, the requisite instrumentation, the scientific evidence to date and the future outlook.

Author(s):  
Sarah Power ◽  
Saba Moghimi ◽  
Brian Nhan ◽  
Tom Chau

As the number of individuals without physical access to communication or environmental interaction escalates, there are increasing efforts to uncover novel and unconventional access pathways. In this chapter, we introduce three emerging access technologies for individuals with severe disabilities: near-infrared spectroscopy, electroencephalographic measurement of visually-evoked potentials and infrared thermographic imaging of the face. The first two technologies harness activity directly from the brain while the third exploits spontaneous temperature changes in the face. For each technology, we discuss the physiological underpinnings, the requisite instrumentation, the scientific evidence to date and the future outlook.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 276
Author(s):  
Norasyimah Sahat ◽  
Afishah Alias ◽  
Fouziah Md Yassin

A Brain-Computer Interface (BCI) is a direct communication pathway between a human and external device. This system is very useful especially for disabled people as their brainwave still can emit electrical activity and can move the machine even with severe motor impairments. This research aims to investigate the brain waves produced by humans in terms of attention level for robot movement based on sex and age category of children (6-12 years), teenagers (18-25 years old) and adult (30 years and over). An Electroencephalography (EEG) device called Neurosky Mindwave Mobile has been used to obtain brainwave signals produced by humans. There were five aspects of robot movement namely forward (F), right (R), left (L), backward (B) and stop (S). From the analysis, the subject is less focus when doing the backward movement compared to another aspect of movements. Based on sex difference, the male has a higher attention level than female in every aspect of movement except for the left movement. The age group that has the highest attention level is teenager and the lowest is adult. It can be concluded that the attention level produced by human varies depending on age and sex difference of the individual itself.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ali Samadani ◽  
Song Kim ◽  
Jae Moon ◽  
Kyurim Kang ◽  
Tom Chau

Although physiological synchronization has been associated with the level of empathy in emotionally meaningful relationships, little is known about the interbrain synchrony between non-speaking children with severe disabilities and their familial caregivers. In a repeated measures observational study, we ascertained the degree of interbrain synchrony during music therapy in 10 child-parent dyads, where the children were non-speaking and living with severe motor impairments. Interbrain synchrony was quantified via measurements of spectral coherence and Granger causality between child and parent electroencephalographic (EEG) signals collected during ten 15-min music therapy sessions per dyad, where parents were present as non-participating, covert observers. Using cluster-based permutation tests, we found significant child-parent interbrain synchrony, manifesting most prominently across dyads in frontal brain regions within β and low γ frequencies. Specifically, significant dyadic coherence was observed contra-laterally, between child frontal right and parental frontal left regions at β and lower γ bands in empathy-related brain areas. Furthermore, significant Granger influences were detected bidirectionally (from child to parent and vice versa) in the same frequency bands. In all dyads, significant increases in session-specific coherence and Granger influences were observed over the time course of a music therapy session. The observed interbrain synchrony suggests a cognitive-emotional coupling during music therapy between child and parent that is responsive to change. These findings encourage further study of the socio-empathic capacity and interpersonal relationships formed between caregivers and non-speaking children with severe physical impairments.


2020 ◽  
Vol 5 (1) ◽  
pp. 88-96
Author(s):  
Mary R. T. Kennedy

Purpose The purpose of this clinical focus article is to provide speech-language pathologists with a brief update of the evidence that provides possible explanations for our experiences while coaching college students with traumatic brain injury (TBI). Method The narrative text provides readers with lessons we learned as speech-language pathologists functioning as cognitive coaches to college students with TBI. This is not meant to be an exhaustive list, but rather to consider the recent scientific evidence that will help our understanding of how best to coach these college students. Conclusion Four lessons are described. Lesson 1 focuses on the value of self-reported responses to surveys, questionnaires, and interviews. Lesson 2 addresses the use of immediate/proximal goals as leverage for students to update their sense of self and how their abilities and disabilities may alter their more distal goals. Lesson 3 reminds us that teamwork is necessary to address the complex issues facing these students, which include their developmental stage, the sudden onset of trauma to the brain, and having to navigate going to college with a TBI. Lesson 4 focuses on the need for college students with TBI to learn how to self-advocate with instructors, family, and peers.


1984 ◽  
Vol 29 (7) ◽  
pp. 567-568
Author(s):  
Gilles Kirouac
Keyword(s):  
The Face ◽  

2017 ◽  
Vol 1 ◽  
pp. 247054701771191 ◽  
Author(s):  
Eric L. Garland ◽  
Adam W. Hanley ◽  
Anne K. Baker ◽  
Matthew O. Howard

Mindfulness-based interventions have been heralded as promising means of alleviating chronic stress. While meta-analyses indicate that mindfulness-based interventions significantly reduce global measures of stress, how mindfulness-based interventions modulate the specific mechanisms underpinning chronic stress as operationalized by the National Institute of Mental Health research domain criteria (RDoC) of sustained threat has not yet been detailed in the literature. To address this knowledge gap, this article aims to (1) review evidence that mindfulness-based interventions ameliorate each of the 10 elements of behavioral dysregulation characterizing sustained threat via an array of mindful counter-regulatory strategies; (2) review evidence that mindfulness-based interventions modify biological domains implicated in sustained threat, such as the hypothalamic–pituitary–adrenal axis, as well as brain circuits involved in attentional function, limbic reactivity, habit behavior, and the default mode network; and (3) integrate these findings into a novel conceptual framework of mindful self-regulation in the face of stress—the Mindfulness-to-Meaning Theory. Taken together, the extant body of scientific evidence suggests that the practice of mindfulness enhances a range biobehavioral factors implicated in adaptive stress coping and induces self-referential plasticity, leading to the ability to find meaning in adversity. These mechanistic findings can inform the treatment development process to optimize the next generation of mindfulness-based interventions for greater therapeutic efficacy.


2021 ◽  
Vol 22 (3) ◽  
pp. 1122
Author(s):  
Mario Forcione ◽  
Mario Ganau ◽  
Lara Prisco ◽  
Antonio Maria Chiarelli ◽  
Andrea Bellelli ◽  
...  

The brain tissue partial oxygen pressure (PbtO2) and near-infrared spectroscopy (NIRS) neuromonitoring are frequently compared in the management of acute moderate and severe traumatic brain injury patients; however, the relationship between their respective output parameters flows from the complex pathogenesis of tissue respiration after brain trauma. NIRS neuromonitoring overcomes certain limitations related to the heterogeneity of the pathology across the brain that cannot be adequately addressed by local-sample invasive neuromonitoring (e.g., PbtO2 neuromonitoring, microdialysis), and it allows clinicians to assess parameters that cannot otherwise be scanned. The anatomical co-registration of an NIRS signal with axial imaging (e.g., computerized tomography scan) enhances the optical signal, which can be changed by the anatomy of the lesions and the significance of the radiological assessment. These arguments led us to conclude that rather than aiming to substitute PbtO2 with tissue saturation, multiple types of NIRS should be included via multimodal systemic- and neuro-monitoring, whose values then are incorporated into biosignatures linked to patient status and prognosis. Discussion on the abnormalities in tissue respiration due to brain trauma and how they affect the PbtO2 and NIRS neuromonitoring is given.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Giulio Tononi ◽  
Chiara Cirelli

Sleep must serve an essential, universal function, one that offsets the risk of being disconnected from the environment. The synaptic homeostasis hypothesis (SHY) is an attempt to identify this essential function. Its core claim is that sleep is needed to reestablish synaptic homeostasis, which is challenged by the remarkable plasticity of the brain. In other words, sleep is “the price we pay for plasticity.” In this issue, M. G. Frank reviewed several aspects of the hypothesis and raised several issues. The comments below provide a brief summary of the motivations underlying SHY and clarify that SHY is a hypothesis not about specific mechanisms, but about a universal, essential function of sleep. This function is the preservation of synaptic homeostasis in the face of a systematic bias toward a net increase in synaptic strength—a challenge that is posed by learning during adult wake, and by massive synaptogenesis during development.


Author(s):  
Clairton Marcolongo Pereira ◽  
Tayná B. Silva ◽  
Laiz Zaché Roque ◽  
Bárbara Barros ◽  
Luiz Alexandre Moscon ◽  
...  
Keyword(s):  
The Face ◽  

Sign in / Sign up

Export Citation Format

Share Document