Line Profiles Caused by Planar Faults

The planar faults in crystalline materials yield characteristic broadening of X-ray line profiles. The diffraction peak shape caused by intrinsic and extrinsic stacking faults and twin boundaries formed on close packed {111} planes in face centered cubic (fcc) crystals are calculated. The Bragg reflections consist of subreflections that can be categorized by specific selection rules for the hkl indices. The breadth and the position of the subreflections relative to the exact Bragg angle depend on their indices. For instance, if the sum of indices of a subreflection is a multiple of three, neither the position nor the breadth of this peak is influenced by planar faults. Other subreflections are broadened and shifted simultaneously due to intrinsic and extrinsic stacking faults. For both fcc and hexagonal close packed (hcp) crystals each subreflection caused by twin boundaries is a sum of symmetric and antisymmetric Lorentzian functions. The latter profile component is caused by the interference between the radiations scattered from the parent and twinned lamellae in the crystal. The antisymmetric Lorentzian function yields a shift of the subprofile center. For fcc materials this displacement of peak position is marginal since twin boundaries are formed on close packed {111} planes; however in hcp crystals, where twinning usually occurs on pyramidal planes, this effect should be taken into account in the line profile evaluation. The effect of anti-phase boundaries on line profiles of superstructure reflections for Cu3Au is also discussed in this chapter.

2015 ◽  
Vol 48 (1) ◽  
pp. 238-243 ◽  
Author(s):  
Antara Pal ◽  
Janne-Mieke Meijer ◽  
Joost R. Wolters ◽  
Willem K. Kegel ◽  
Andrei V. Petukhov

The crystalline structure assembled out of charge-stabilized asymmetric dumbbell-like colloidal particles in ethyl alcohol by sedimentation has been probed using small-angle X-ray scattering with microradian resolution. The existence of plastic face-centered cubic crystals was inferred from the observed Bragg peaks. The presence of stacking faults and the mosaic structure of the sample lead to the appearance of diffuse scattering, forming Bragg scattering cylinders in the three-dimensional reciprocal space. The quality of the crystalline structure, as ascertained from a detailed analysis of the diffuse scattering intensity distribution, indicates the presence of only 1.5% of stacking faults between the hexagonal close-packed layers.


Author(s):  
John F. Mansfield ◽  
Douglas C. Crawford

A method has been developed that allows on-line measurement of the thickness of crystalline materials in the analytical electron microscope. Two-beam convergent beam electron diffraction (CBED) patterns are digitized from a JEOL 2000FX electron microscope into an Apple Macintosh II microcomputer via a Gatan #673 CCD Video Camera and an Imaging Systems Technology Video 1000 frame-capture board. It is necessary to know the lattice parameters of the sample since measurements are made of the spacing of the diffraction discs in order to calibrate the pattern. The sample thickness is calculated from measurements of the spacings of the fringes that are seen in the diffraction discs. This technique was pioneered by Kelly et al, who used the two-beam dynamic theory of MacGillavry relate the deviation parameter (Si) of the ith fringe from the exact Bragg condition to the specimen thickness (t) with the equation:Where ξg, is the extinction distance for that reflection and ni is an integer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agnès Dewaele ◽  
Angelika D. Rosa ◽  
Nicolas Guignot ◽  
Denis Andrault ◽  
João Elias F. S. Rodrigues ◽  
...  

AbstractThe compression of argon is measured between 10 K and 296 K up to 20 GPa and and up to 114 GPa at 296 K in diamond anvil cells. Three samples conditioning are used: (1) single crystal sample directly compressed between the anvils, (2) powder sample directly compressed between the anvils, (3) single crystal sample compressed in a pressure medium. A partial transformation of the face-centered cubic (fcc) phase to a hexagonal close-packed (hcp) structure is observed above 4.2–13 GPa. Hcp phase forms through stacking faults in fcc-Ar and its amount depends on pressurizing conditions and starting fcc-Ar microstructure. The quasi-hydrostatic equation of state of the fcc phase is well described by a quasi-harmonic Mie–Grüneisen–Debye formalism, with the following 0 K parameters for Rydberg-Vinet equation: $$V_0$$ V 0 = 38.0 Å$$^3$$ 3 /at, $$K_0$$ K 0 = 2.65 GPa, $$K'_0$$ K 0 ′ = 7.423. Under the current experimental conditions, non-hydrostaticity affects measured P–V points mostly at moderate pressure ($$\le$$ ≤ 20 GPa).


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 742
Author(s):  
Motomichi Koyama ◽  
Takeaki Gondo ◽  
Kaneaki Tsuzaki

The effects of ausforming in an Fe30Mn10Cr10Co high-entropy alloy on the microstructure, hardness, and plastic anisotropy were investigated. The alloy showed a dual-phase microstructure consisting of face-centered cubic (FCC) austenite and hexagonal close-packed (HCP) martensite in the as-solution-treated condition, and the finish temperature for the reverse transformation was below 200 °C. Therefore, low-temperature ausforming at 200 °C was achieved, which resulted in microstructure refinement and significantly increased the hardness. Furthermore, plasticity anisotropy, a common problem in HCP structures, was suppressed by the ausforming treatment. This, in turn, reduced the scatter of the hardness.


2019 ◽  
Vol 48 (9) ◽  
pp. 1062-1064 ◽  
Author(s):  
Naoki Araki ◽  
Kohei Kusada ◽  
Satoru Yoshioka ◽  
Takeharu Sugiyama ◽  
Toshiaki Ina ◽  
...  

1969 ◽  
Vol 4 (5) ◽  
pp. 262-270 ◽  
Author(s):  
S Lele ◽  
B Prasad ◽  
P Rama Rao

2002 ◽  
Vol 74 (9) ◽  
pp. 1663-1671 ◽  
Author(s):  
Raghani Pushpa ◽  
Shobhana Narasimhan

Close-packed metal surfaces and heteroepitaxial systems frequently display a structure consisting of regularly spaced misfit dislocations, with a network of domain walls separating face-centered cubic (fcc) and hexagonal close-packed (hcp) domains. These structures can serve as templates for growing regularly spaced arrays of nanoislands. We present a theoretical investigation of the factors controlling the size and shape of the domains, using Pt(111) as a model system. Upon varying the chemical potential, the surface structure changes from being unreconstructed to the honeycomb, wavy triangles, "bright stars", or Moiré patterns observed experimentally on Pt(111) and other systems. For the particular case of Pt(111), isotropically contracted star-like patterns are favored over uniaxially contracted stripes.


2022 ◽  
Vol 210 ◽  
pp. 114461
Author(s):  
Fuzhou Han ◽  
Geping Li ◽  
Fusen Yuan ◽  
Yingdong Zhang ◽  
Wenbin Guo ◽  
...  

2018 ◽  
Vol 60 (5) ◽  
pp. 978
Author(s):  
O.B. Бачурина ◽  
P.T. Мурзаев ◽  
A.C. Семенов ◽  
E.A. Корзникова ◽  
C.B. Дмитриев

AbstractDiscrete breathers (DBs) have been described among pure metals with face-centered cubic (FCC) and body-centered cubic (BCC) lattice, but for hexagonal close-packed (HCP) metals, their properties are little studied. In this paper, the properties of standing and moving DBs in beryllium HCP metal are analyzed by the molecular dynamics method using the many-body interatomic potential. It is shown that the DB is localized in a close-packed atomic row in the basal plane, while oscillations with a large amplitude along the close-packed row are made by two or three atoms, moving in antiphase with the nearest neighbors. Dependences of the DB frequency on the amplitude, as well as the velocity of the DB on its amplitude and on parameter δ, which determines the phase difference of the oscillations of neighboring atoms, are obtained. The maximum velocity of the DB movement in beryllium reaches 4.35 km/s, which is 33.7% of the velocity of longitudinal sound waves. The obtained results supplement our concepts about the mechanisms of localization and energy transport in HCP metals.


Sign in / Sign up

Export Citation Format

Share Document