Applications

In this chapter, some applications of micropattern detectors are described. Their main application is tracking of charged particles in high-energy physics. However, currently there are a lot of research and developments going on, which may open new exciting fields of applications, for example in dark matter search, medical applications, homeland security, etc. The authors start with the traditional applications, which are in high-energy physics and astrophysics. Later, the focus shifts to promising developments oriented towards new applications. These innovative applications include: imaging of charged particles and energetic photons with unprecedented high 2-D spatial resolution (e.g. in mammography), time projection chambers capable operating in a high flux of particles (e.g. ALICE upgraded TPC), and visualization of ultraviolet and visible photons. Finally, a short description of the international collaboration RD51 established at CERN is given in order to promote the development of micropattern detectors and their applications.

Instruments ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 31
Author(s):  
Corey Adams ◽  
Marco del Tutto

The amount and complexity of data recorded by high energy physics experiments are rapidly growing, and with these grow the difficulties in visualizing such data. To study the physics of neutrinos, a type of elementary particle, scientists use liquid argon time projection chamber (LArTPC) detectors, among other technologies. LArTPCs have a very high spatial resolution and resolve many of the elementary particles that come out of a neutrino interacting within the argon in the detector. Visualizing these neutrino interactions is of fundamental importance to understanding the properties of neutrinos, but also monitoring and checking on the detector conditions and operations. From these ideas, we have developed TITUS, an event display that shows images recorded by these neutrino detectors. TITUS is a piece of software that reads data coming from LArTPC detectors (as well as the corresponding simulation) and allows users to explore such data in multiple ways. TITUS is flexible to enable fast prototyping and customization.


2019 ◽  
Vol 20 (4) ◽  
Author(s):  
Marcin Kucharczyk ◽  
Marcin Wolter

High Energy Physics experiments require fast and efficient methods toreconstruct the tracks of charged particles. Commonly used algorithms aresequential and the CPU required increases rapidly with a number of tracks.Neural networks can speed up the process due to their capability to modelcomplex non-linear data dependencies and finding all tracks in parallel.In this paper we describe the application of the Deep Neural Networkto the reconstruction of straight tracks in a toy two-dimensional model. It isplanned to apply this method to the experimental data taken by the MUonEexperiment at CERN.


1990 ◽  
Vol 01 (01) ◽  
pp. 147-163 ◽  
Author(s):  
H. DREVERMANN ◽  
C. GRAB

Different methods to graphically represent points and tracks of events, measured with the ALEPH-detector at LEP, are discussed. Special emphasis is put on projections, that are adapted to the cylindrical geometry of the detector, to the track geometry of charged particles moving in a homogeneous magnetic field and to the event topologies, encountered in Z0 physics. A new concept, the so-called "V-plot", is introduced, which incorporates the full three-dimensional information of spatial points in a single picture. It is ideally suited for the study of more complicated event topologies, such as e.g. decays of particles within jets, and of the correlation between tracks and calorimeter clusters. In addition, we propose ways of combining histograms and projections to incorporate the tracking and calorimetric information into a single picture. We describe methods of employing colour schemes to facilitate recognition of correlations between hits, tracks and/or subdetectors in different representations.


1991 ◽  
Vol 02 (01) ◽  
pp. 328-330
Author(s):  
H. DREVERMANN ◽  
C. GRAB ◽  
B.S. NILSSON ◽  
R.K. VOGL

Different methods to graphically represent points and tracks of events, measured with the ALEPH-detector at LEP, are discussed. Special emphasis is put on projections, that are adapted to the cylindrical geometry of the detector, to the track geometry of charged particles moving in a homogeneous magnetic field and to the specific event topologies, encountered in Z0 physics. A new concept, the so-called “V-plot”, is introduced, which incorporates the full three dimensional information of spatial points in a single picture. It is ideally suited for the study of more complicated event topologies, such as e.g. decays of particles within jets, and of the correlation between information from tracking and calorimetric devices. In addition, we propose ways of combining histograms and projections in a single picture. We describe methods of employing colour schemes to facilitate recognition of correlations between hits, tracks and/or subdetectors in different representations.


2013 ◽  
Vol 28 (13) ◽  
pp. 1340025 ◽  
Author(s):  
SERGE DUARTE PINTO

From its invention in 1997, the Gas Electron Multiplier (GEM) has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.


1992 ◽  
Vol 03 (supp01) ◽  
pp. 285-295
Author(s):  
Clark S. Lindsey ◽  
Bruce Denby ◽  
Herman Haggerty ◽  
Ken Johns

We have tested a commercial analog VLSI neural network chip for finding in real time the intercept and slope of charged particles traversing a drift chamber. Voltages proportional to the drift times were input to the Intel ETANN chip and the outputs were recorded and later compared off line to conventional track fits. We will discuss the chamber and test setup, the chip specifications, and results of recent tests. We’ll briefly discuss possible applications in high energy physics detector triggers.


2020 ◽  
Vol 245 ◽  
pp. 11006 ◽  
Author(s):  
Mario Lassnig ◽  
Martin Barisits ◽  
Paul J Laycock ◽  
Cédric Serfon ◽  
Eric W Vaandering ◽  
...  

For many scientific projects, data management is an increasingly complicated challenge. The number of data-intensive instruments generating unprecedented volumes of data is growing and their accompanying workflows are becoming more complex. Their storage and computing resources are heterogeneous and are distributed at numerous geographical locations belonging to different administrative domains and organisations. These locations do not necessarily coincide with the places where data is produced nor where data is stored, analysed by researchers, or archived for safe long-term storage. To fulfil these needs, the data management system Rucio has been developed to allow the high-energy physics experiment ATLAS at LHC to manage its large volumes of data in an efficient and scalable way. But ATLAS is not alone, and several diverse scientific projects have started evaluating, adopting, and adapting the Rucio system for their own needs. As the Rucio community has grown, many improvements have been introduced, customisations have been added, and many bugs have been fixed. Additionally, new dataflows have been investigated and operational experiences have been documented. In this article we collect and compare the common successes, pitfalls, and oddities that arose in the evaluation efforts of multiple diverse experiments, and compare them with the ATLAS experience. This includes the high-energy physics experiments Belle II and CMS, the neutrino experiment DUNE, the scattering radar experiment EISCAT3D, the gravitational wave observatories LIGO and VIRGO, the SKA radio telescope, and the dark matter search experiment XENON.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Z. J. Jiang ◽  
H. L. Zhang ◽  
J. Wang ◽  
K. Ma

By taking into account the effects of leading particles, we discuss the pseudorapidity distributions of the charged particles produced in high energy heavy ion collisions in the context of evolution-dominated hydrodynamic model. The leading particles are supposed to have a Gaussian rapidity distribution normalized to the number of participants. A comparison is made between the theoretical results and the experimental measurements performed by BRAHMS and PHOBOS Collaboration at BNL-RHIC in Au-Au and Cu-Cu collisions atsNN=200 GeV and by ALICE Collaboration at CERN-LHC in Pb-Pb collisions atsNN=2.76 TeV.


2004 ◽  
Vol 19 (23) ◽  
pp. 3807-3818 ◽  
Author(s):  
ROBERT FOOT

Mirror matter-type dark matter is one dark matter candidate which is particularly well motivated from high energy physics. The theoretical motivation and experimental evidence are pedagogically reviewed, with emphasis on the implications of recent orthopositronium experiments, the DAMA/NaI dark matter search, anomalous meteorite events etc.


Sign in / Sign up

Export Citation Format

Share Document