Climate Change Effects on Human Health with a Particular Focus on Vector-Borne Diseases and Malaria in Africa

2016 ◽  
pp. 1128-1146
Author(s):  
Salisu Lawal Halliru

Malaria is currently affecting more people in the world than any other disease. On average, two members of each household suffered from malaria fever monthly, with females and children being most vulnerable to malaria attacks. This chapter assessed communities' perception about malaria epidemic, weather variable and climate change in metropolitan Kano. Information was extracted related to communities' perception about malaria epidemic and climate change. Socio demographic characteristics of respondents in the study areas were extracted and analyzed. 75% of the participants were males, while 25% were females, malaria disease affected 79.66% and 59.66% respondent perceived that heavy rainfall, floods and high temperature are better conditions to the breeding and spread of malaria vectors. Hospital records revealed that Month of March and April (2677 and 2464, respectively) has highest number of malaria cases recorded between December 2010 to June 2011. Further research is recommended for in-depth information from health officials related to raising awareness.

2017 ◽  
pp. 1075-1093
Author(s):  
Salisu Lawal Halliru

Malaria is currently affecting more people in the world than any other disease. On average, two members of each household suffered from malaria fever monthly, with females and children being most vulnerable to malaria attacks. This chapter assessed communities' perception about malaria epidemic, weather variable and climate change in metropolitan Kano. Information was extracted related to communities' perception about malaria epidemic and climate change. Socio demographic characteristics of respondents in the study areas were extracted and analyzed. 75% of the participants were males, while 25% were females, malaria disease affected 79.66% and 59.66% respondent perceived that heavy rainfall, floods and high temperature are better conditions to the breeding and spread of malaria vectors. Hospital records revealed that Month of March and April (2677 and 2464, respectively) has highest number of malaria cases recorded between December 2010 to June 2011. Further research is recommended for in-depth information from health officials related to raising awareness.


Author(s):  
Salisu Lawal Halliru

Malaria is currently affecting more people in the world than any other disease. On average, two members of each household suffered from malaria fever monthly, with females and children being most vulnerable to malaria attacks. This chapter assessed communities' perception about malaria epidemic, weather variable and climate change in metropolitan Kano. Information was extracted related to communities' perception about malaria epidemic and climate change. Socio demographic characteristics of respondents in the study areas were extracted and analyzed. 75% of the participants were males, while 25% were females, malaria disease affected 79.66% and 59.66% respondent perceived that heavy rainfall, floods and high temperature are better conditions to the breeding and spread of malaria vectors. Hospital records revealed that Month of March and April (2677 and 2464, respectively) has highest number of malaria cases recorded between December 2010 to June 2011. Further research is recommended for in-depth information from health officials related to raising awareness.


2015 ◽  
Vol 370 (1665) ◽  
pp. 20130552 ◽  
Author(s):  
Diarmid Campbell-Lendrum ◽  
Lucien Manga ◽  
Magaran Bagayoko ◽  
Johannes Sommerfeld

Vector-borne diseases continue to contribute significantly to the global burden of disease, and cause epidemics that disrupt health security and cause wider socioeconomic impacts around the world. All are sensitive in different ways to weather and climate conditions, so that the ongoing trends of increasing temperature and more variable weather threaten to undermine recent global progress against these diseases. Here, we review the current state of the global public health effort to address this challenge, and outline related initiatives by the World Health Organization (WHO) and its partners. Much of the debate to date has centred on attribution of past changes in disease rates to climate change, and the use of scenario-based models to project future changes in risk for specific diseases. While these can give useful indications, the unavoidable uncertainty in such analyses, and contingency on other socioeconomic and public health determinants in the past or future, limit their utility as decision-support tools. For operational health agencies, the most pressing need is the strengthening of current disease control efforts to bring down current disease rates and manage short-term climate risks, which will, in turn, increase resilience to long-term climate change. The WHO and partner agencies are working through a range of programmes to (i) ensure political support and financial investment in preventive and curative interventions to bring down current disease burdens; (ii) promote a comprehensive approach to climate risk management; (iii) support applied research, through definition of global and regional research agendas, and targeted research initiatives on priority diseases and population groups.


2001 ◽  
Vol 356 (1411) ◽  
pp. 1057-1068 ◽  
Author(s):  
R. S. Kovats ◽  
D. H. Campbell-Lendrum ◽  
A. J. McMichel ◽  
A. Woodward ◽  
J. St H. Cox

The world's climate appears now to be changing at an unprecedented rate. Shifts in the distribution and behaviour of insect and bird species indicate that biological systems are already responding to this change. It is well established that climate is an important determinant of the spatial and temporal distribution of vectors and pathogens. In theory, a change in climate would be expected to cause changes in the geographical range, seasonality (intra–annual variability), and in the incidence rate (with or without changes in geographical or seasonal patterns). The detection and then attribution of such changes to climate change is an emerging task for scientists. We discuss the evidence required to attribute changes in disease and vectors to the early effects of anthropogenic climate change. The literature to date indicates that there is a lack of strong evidence of the impact of climate change on vector–borne diseases (i.e. malaria, dengue, leishmaniasis, tick–borne diseases). New approaches to monitoring, such as frequent and long–term sampling along transects to monitor the full latitudinal and altitudinal range of specific vector species, are necessary in order to provide convincing direct evidence of climate change effects. There is a need to reassess the appropriate levels of evidence, including dealing with the uncertainties attached to detecting the health impacts of global change.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
E. T. Ngarakana-Gwasira ◽  
C. P. Bhunu ◽  
M. Masocha ◽  
E. Mashonjowa

The sensitivity of vector borne diseases like malaria to climate continues to raise considerable concern over the implications of climate change on future disease dynamics. The problem of malaria vectors shifting from their traditional locations to invade new zones is of important concern. A mathematical model incorporating rainfall and temperature is constructed to study the transmission dynamics of malaria. The reproduction number obtained is applied to gridded temperature and rainfall datasets for baseline climate and future climate with aid of GIS. As a result of climate change, malaria burden is likely to increase in the tropics, the highland regions, and East Africa and along the northern limit of falciparum malaria. Falciparum malaria will spread into the African highlands; however it is likely to die out at the southern limit of the disease.


2021 ◽  
Vol 26 ◽  
pp. 950-967
Author(s):  
Happy Mathew Tirivangasi ◽  
Sejabaledi Agnes Rankoana ◽  
Louis Nyahunda

The aim of this paper is to present climate change health related effects that may pose a challenge for South Africa to attain South Africa’s plans to achieve Sustainable Development Goal (SGD) 3. It examined South Africa’s preparedness to address the impacts of climate change in order to best achieve SDGs 3. Climate change is a challenging phenomenon, which has seen many people around the world being affected by its effects unaware and unprepared. Climate change affects weather patterns, for instance rainfall patterns and temperatures. Consequently, this resulted in draughts, floods, diseases, veld fires, high temperatures, changing times of floods occurrences and depleted water resources in Africa and the rest of the world. This has placed human life in danger. Considering the increasing burden of diseases, the United Nations (UN) adopted Sustainable Development Goals (SDGs) to address of poverty, hunger disease and want by 2030. However, climate change threatens the ability of countries to achieve this by the anticipated time. The researchers conducted an extensive content analysis by interrogating various sources of literatures sources that include journal articles, thesis, academic books, and documents written by the government of South Africa. The study reveals that that climate related deaths will increase between 2030 and 2050 due to these health impacts of climate change. The study reveals that South Africa, like many other countries in Sub-Saharan Africa faces threat of vector borne diseases, mental health, malnutrition, and diarrheal, and other disease resulting from water scarcity and heat waves. This comes because of high prevalence of drought, floods, and increased temperatures. The study recommends early awareness and new communication strategies for the promotion of mental health, heat education campaign and prevention of vector borne diseases.  


Author(s):  
Kahime Kholoud ◽  
Sereno Denis ◽  
Bounoua Lahouari ◽  
Moulay El Hidan ◽  
Bouhout Souad

The proliferation of vector-borne diseases are predicted to increase in a changing climate and Leishmaniases, as a vector-borne diseases, are re-emerging diseases in several regions of the world. In Morocco, during the last decade, a sharp increase in cutaneous leishmaniases cases has been reported. Nevertheless, in Morocco, leishmaniases are a major public health problem, and little interest was given to climate change impacts on the distribution and spread of these diseases. As insect-borne diseases, the incidence and distribution of leishmaniases are influenced by environmental changes, but also by several socio-economic and cultural factors. From a biological point of view, environmental variables have effects on the survival of insect vectors and mammalian reservoirs, which, in turn, affects transmission. Here, we highlight the effects of climate change in Morocco and discuss its consequences on the epidemiology of leishmaniases to identify challenges and define targeted recommendations to fight this disease.


2021 ◽  
Vol 3 ◽  
Author(s):  
Vadlamudi Brahmananda Rao ◽  
Karumuri Ashok ◽  
Dandu Govardhan

India, one of the most disaster-prone countries in the world, has suffered severe economic losses as well as life losses as per the World Focus report.1 More than 80% of its land and more than 50 million of its people are affected by weather disasters. Disaster mitigation necessitates reliable future predictions, which need focused climate change research. From the climate change perspective, the summer monsoon, the main lifeline of India, is predicted to change very adversely. The duration of the rainy season is going to shrink, and pre-monsoon drying can also occur. These future changes can impact the increase of vector-borne diseases, such as malaria, dengue, and others. In another recent study, 29 world experts from various institutions found that the largest exposure to disasters, such as tropical cyclones (TCs), river floods, droughts, and heat waves, is over India. For improved and skillful prediction, we suggest a three-stage cumulative method, namely, K is for observational analysis, U is for knowledge and understanding, and M is for modeling and prediction. In this brief note, we report our perspective of imminent weather disasters to India, namely, monsoons and TCs, and how the weather and climate forecasting can be improved, leading to better climate change adaptation.


2019 ◽  
Vol 30 (5) ◽  
pp. 192-194
Author(s):  
John (Luke) Lucas

The author considers the threat to vector-borne diseases in the light of climate change.


Sign in / Sign up

Export Citation Format

Share Document