scholarly journals Early effects of climate change: do they include changes in vector-borne disease?

2001 ◽  
Vol 356 (1411) ◽  
pp. 1057-1068 ◽  
Author(s):  
R. S. Kovats ◽  
D. H. Campbell-Lendrum ◽  
A. J. McMichel ◽  
A. Woodward ◽  
J. St H. Cox

The world's climate appears now to be changing at an unprecedented rate. Shifts in the distribution and behaviour of insect and bird species indicate that biological systems are already responding to this change. It is well established that climate is an important determinant of the spatial and temporal distribution of vectors and pathogens. In theory, a change in climate would be expected to cause changes in the geographical range, seasonality (intra–annual variability), and in the incidence rate (with or without changes in geographical or seasonal patterns). The detection and then attribution of such changes to climate change is an emerging task for scientists. We discuss the evidence required to attribute changes in disease and vectors to the early effects of anthropogenic climate change. The literature to date indicates that there is a lack of strong evidence of the impact of climate change on vector–borne diseases (i.e. malaria, dengue, leishmaniasis, tick–borne diseases). New approaches to monitoring, such as frequent and long–term sampling along transects to monitor the full latitudinal and altitudinal range of specific vector species, are necessary in order to provide convincing direct evidence of climate change effects. There is a need to reassess the appropriate levels of evidence, including dealing with the uncertainties attached to detecting the health impacts of global change.

Author(s):  
Maha Bouzid

Waterborne diseases are caused by a multitude of pathogens and associated with a significant burden in both developed and developing countries. While the assessment of the adverse impacts of climate change on human heath from infectious diseases has mainly focused on vector-borne diseases, waterborne diseases prevalence and transmission patterns are also likely to be impacted by environmental change. This chapter will outline relevant waterborne pathogens, summarise the impact of climate change on disease transmission and explore climate change adaptation options in order to reduce the increased burden of waterborne diseases.


2021 ◽  
pp. 26-31
Author(s):  
Cyril Caminade

Abstract This expert opinion provides an overview of mathematical models that have been used to assess the impact of climate change on ticks and tick-borne diseases, ways forward in terms of improving models for the recent context and broad guidelines for conducting future climate change risk assessment.


2017 ◽  
pp. 1075-1093
Author(s):  
Salisu Lawal Halliru

Malaria is currently affecting more people in the world than any other disease. On average, two members of each household suffered from malaria fever monthly, with females and children being most vulnerable to malaria attacks. This chapter assessed communities' perception about malaria epidemic, weather variable and climate change in metropolitan Kano. Information was extracted related to communities' perception about malaria epidemic and climate change. Socio demographic characteristics of respondents in the study areas were extracted and analyzed. 75% of the participants were males, while 25% were females, malaria disease affected 79.66% and 59.66% respondent perceived that heavy rainfall, floods and high temperature are better conditions to the breeding and spread of malaria vectors. Hospital records revealed that Month of March and April (2677 and 2464, respectively) has highest number of malaria cases recorded between December 2010 to June 2011. Further research is recommended for in-depth information from health officials related to raising awareness.


2017 ◽  
pp. 1041-1055
Author(s):  
Maha Bouzid

Waterborne diseases are caused by a multitude of pathogens and associated with a significant burden in both developed and developing countries. While the assessment of the adverse impacts of climate change on human heath from infectious diseases has mainly focused on vector-borne diseases, waterborne diseases prevalence and transmission patterns are also likely to be impacted by environmental change. This chapter will outline relevant waterborne pathogens, summarise the impact of climate change on disease transmission and explore climate change adaptation options in order to reduce the increased burden of waterborne diseases.


2019 ◽  
Vol 3 (2) ◽  
pp. 143-152 ◽  
Author(s):  
Shlomit Paz

Abstract One of the main impacts of climate change on health is the influence on vector-borne diseases (VBDs). During the last few years, yearly outbreaks of the West Nile virus (WNV) have occurred in many locations, providing evidence of ongoing transmission. Currently, it is the most widely distributed arbovirus in the world. Increases in ambient temperature have impacts on WNV transmission. Indeed, clear associations were found between warm conditions and WNV outbreaks in various areas. The impact of changes in rainfall patterns on the incidence of the disease is influenced by the amount of precipitation (increased rainfall, floods or droughts), depending on the local conditions and the differences in the ecology and sensitivity of the species of mosquito. Predictions indicate that for WNV, increased warming will result in latitudinal and altitudinal expansions of regions climatically suitable for transmission, particularly along the current edges of its transmission areas. Extension of the transmission season is also predicted. As models show that the current climate change trends are expected to continue, it is important to reinforce WNV control efforts and increase the resilience of population health. For a better preparedness, any assessment of future transmission of WNV should consider the impacts of the changing climate.


Author(s):  
Giovanni Lo Iacono ◽  
Gordon L. Nichols

The introduction of pasteurization, antibiotics, and vaccinations, as well as improved sanitation, hygiene, and education, were critical in reducing the burden of infectious diseases and associated mortality during the 19th and 20th centuries and were driven by an improved understanding of disease transmission. This advance has led to longer average lifespans and the expectation that, at least in the developed world, infectious diseases were a problem of the past. Unfortunately this is not the case; infectious diseases still have a significant impact on morbidity and mortality worldwide. Moreover, the world is witnessing the emergence of new pathogens, the reemergence of old ones, and the spread of antibiotic resistance. Furthermore, effective control of infectious diseases is challenged by many factors, including natural disasters, extreme weather, poverty, international trade and travel, mass and seasonal migration, rural–urban encroachment, human demographics and behavior, deforestation and replacement with farming, and climate change. The importance of environmental factors as drivers of disease has been hypothesized since ancient times; and until the late 19th century, miasma theory (i.e., the belief that diseases were caused by evil exhalations from unhealthy environments originating from decaying organic matter) was a dominant scientific paradigm. This thinking changed with the microbiology era, when scientists correctly identified microscopic living organisms as the pathogenic agents and developed evidence for transmission routes. Still, many complex patterns of diseases cannot be explained by the microbiological argument alone, and it is becoming increasingly clear that an understanding of the ecology of the pathogen, host, and potential vectors is required. There is increasing evidence that the environment, including climate, can affect pathogen abundance, survival, and virulence, as well as host susceptibility to infection. Measuring and predicting the impact of the environment on infectious diseases, however, can be extremely challenging. Mathematical modeling is a powerful tool to elucidate the mechanisms linking environmental factors and infectious diseases, and to disentangle their individual effects. A common mathematical approach used in epidemiology consists in partitioning the population of interest into relevant epidemiological compartments, typically individuals unexposed to the disease (susceptible), infected individuals, and individuals who have cleared the infection and become immune (recovered). The typical task is to model the transitions from one compartment to another and to estimate how these populations change in time. There are different ways to incorporate the impact of the environment into this class of models. Two interesting examples are water-borne diseases and vector-borne diseases. For water-borne diseases, the environment can be represented by an additional compartment describing the dynamics of the pathogen population in the environment—for example, by modeling the concentration of bacteria in a water reservoir (with potential dependence on temperature, pH, etc.). For vector-borne diseases, the impact of the environment can be incorporated by using explicit relationships between temperature and key vector parameters (such as mortality, developmental rates, biting rate, as well as the time required for the development of the pathogen in the vector). Despite the tremendous advancements, understanding and mapping the impact of the environment on infectious diseases is still a work in progress. Some fundamental aspects, for instance, the impact of biodiversity on disease prevalence, are still a matter of (occasionally fierce) debate. There are other important challenges ahead for the research exploring the potential connections between infectious diseases and the environment. Examples of these challenges are studying the evolution of pathogens in response to climate and other environmental changes; disentangling multiple transmission pathways and the associated temporal lags; developing quantitative frameworks to study the potential effect on infectious diseases due to anthropogenic climate change; and investigating the effect of seasonality. Ultimately, there is an increasing need to develop models for a truly “One Health” approach, that is, an integrated, holistic approach to understand intersections between disease dynamics, environmental drivers, economic systems, and veterinary, ecological, and public health responses.


2016 ◽  
pp. 1128-1146
Author(s):  
Salisu Lawal Halliru

Malaria is currently affecting more people in the world than any other disease. On average, two members of each household suffered from malaria fever monthly, with females and children being most vulnerable to malaria attacks. This chapter assessed communities' perception about malaria epidemic, weather variable and climate change in metropolitan Kano. Information was extracted related to communities' perception about malaria epidemic and climate change. Socio demographic characteristics of respondents in the study areas were extracted and analyzed. 75% of the participants were males, while 25% were females, malaria disease affected 79.66% and 59.66% respondent perceived that heavy rainfall, floods and high temperature are better conditions to the breeding and spread of malaria vectors. Hospital records revealed that Month of March and April (2677 and 2464, respectively) has highest number of malaria cases recorded between December 2010 to June 2011. Further research is recommended for in-depth information from health officials related to raising awareness.


Author(s):  
Salisu Lawal Halliru

Malaria is currently affecting more people in the world than any other disease. On average, two members of each household suffered from malaria fever monthly, with females and children being most vulnerable to malaria attacks. This chapter assessed communities' perception about malaria epidemic, weather variable and climate change in metropolitan Kano. Information was extracted related to communities' perception about malaria epidemic and climate change. Socio demographic characteristics of respondents in the study areas were extracted and analyzed. 75% of the participants were males, while 25% were females, malaria disease affected 79.66% and 59.66% respondent perceived that heavy rainfall, floods and high temperature are better conditions to the breeding and spread of malaria vectors. Hospital records revealed that Month of March and April (2677 and 2464, respectively) has highest number of malaria cases recorded between December 2010 to June 2011. Further research is recommended for in-depth information from health officials related to raising awareness.


Author(s):  
Maha Bouzid

Waterborne diseases are caused by a multitude of pathogens and associated with a significant burden in both developed and developing countries. While the assessment of the adverse impacts of climate change on human heath from infectious diseases has mainly focused on vector-borne diseases, waterborne diseases prevalence and transmission patterns are also likely to be impacted by environmental change. This chapter will outline relevant waterborne pathogens, summarise the impact of climate change on disease transmission and explore climate change adaptation options in order to reduce the increased burden of waterborne diseases.


2016 ◽  
Vol 10 (01) ◽  
pp. 1750005 ◽  
Author(s):  
Ezekiel Dangbé ◽  
Antoine Perasso ◽  
Damakoa Irépran ◽  
David Békollé

Climate change influences more and more of our activities. These changes led to environmental changes which has in turn affected the spatial and temporal distribution of the incidence of vector-borne diseases. To establish the impact of climate on contact rate of vector-borne diseases, we examine the variation of prevalence of diseases according to season. In this paper, the goal is to establish that the basic reproductive number [Formula: see text] depends on the duration of transmission period and the date of the first conta-mination case that was declared ([Formula: see text]) in the specific case of malaria. We described the dynamics of transmission of malaria by using non-autonomous differential equations. We analyzed the stability of endemic equilibrium (EE) and disease-free equilibrium (DFE). We prove that the persistence of disease depends on minimum and maximum values of contact rate of vector-borne diseases.


Sign in / Sign up

Export Citation Format

Share Document