Fuzzy Labeled Transition Refinement Tree

Fuzzy Systems ◽  
2017 ◽  
pp. 873-905 ◽  
Author(s):  
Sofia Kouah ◽  
Djamel-Eddine Saidouni

This paper aims to provide a formal framework that supports an incremental development of dynamic systems such as multi agents systems (MAS). We propose a fuzzy labeled transition system model (FLTS for short). FLTS allows a concise action refinement representation and deals with incomplete information through its fuzziness representation. Afterward, based on FLTS model, we propose a refinement model called fuzzy labeled transition refinement tree (FLTRT for short). The FLTRT structure serves as a tree of potential concurrent design trajectories of the system. Also, we introduce bisimulation relations for both models in order to identify equivalent design trajectories, which could be assessed with respect to relevant design parameters.

2014 ◽  
Vol 6 (3) ◽  
pp. 1-31 ◽  
Author(s):  
Sofia Kouah ◽  
Djamel-Eddine Saidouni

This paper aims to provide a formal framework that supports an incremental development of dynamic systems such as multi agents systems (MAS). We propose a fuzzy labeled transition system model (FLTS for short). FLTS allows a concise action refinement representation and deals with incomplete information through its fuzziness representation. Afterward, based on FLTS model, we propose a refinement model called fuzzy labeled transition refinement tree (FLTRT for short). The FLTRT structure serves as a tree of potential concurrent design trajectories of the system. Also, we introduce bisimulation relations for both models in order to identify equivalent design trajectories, which could be assessed with respect to relevant design parameters.


Author(s):  
Sofia Kouah ◽  
Djamel Eddine Saïdouni

For developing large dynamic systems in a rigorous manner, fuzzy labeled transition refinement tree (FLTRT for short) has been defined. This model provides a formal specification framework for designing such systems. In fact, it supports abstraction and enables fuzziness which allows a rigorous formal refinement process. The purpose of this paper is to illustrate the applicability of FLTRT for designing multi agent systems (MAS for short), among others collective and internal agent's behaviors. Therefore, Contract Net Protocol (CNP for short) is chosen as case study.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Han Peng ◽  
Chenglie Du ◽  
Lei Rao ◽  
Fu Chen

In Event-B, people need to use control variables to constrain the order of events, which is a time-consuming and error-prone process. This paper presents a method of combining labeled transition system and iUML-B to complete the behavior modeling of system, which is more convenient and practical for engineers who are accustomed to using the automaton to build a system behavior model. First, we use labeled transition system to establish the behavior model of the system. Then we simulate and verify the event traces of the labeled transition system behavior model. Finally, we convert labeled transition system model into iUML-B state machine and use it to generate the corresponding control flow model. We use Abrial’s bounded retransmission protocol to demonstrate the practicality of our approach. The simulation results show that the system behavior model generated by the iUML-B state machine has the same event trace as the corresponding labeled transition system model.


2016 ◽  
Vol 12 (1) ◽  
pp. 63-94 ◽  
Author(s):  
Sofia Kouah ◽  
Djamel Eddine Saïdouni ◽  
Ilham Kitouni

Designing Multi agent systems needs a high-level specification model which supports abstraction, dynamicity, openness and enables fuzziness. Since the model of Synchronized Petri Nets supports dynamicity and abstraction, we extend it by fuzziness, openness and interaction with environment. The proposed model called Open Fuzzy Synchronized Petri Nets (OFSyPN for short) associates action name with transitions and enables openness feature and interaction with environment. Each action has an uncertainty degree and places are typed. The authors give an operational semantics for OFSyPN in terms of Fuzzy Labeled Transition System (FLTS for short). FLTS is a semantics model, which allows a concise action refinement representation and deals with incomplete information through its fuzziness representation. Furthermore the structure can be used to produce a tree of potential concurrent design trajectories, named fuzzy labeled transition refinement tree (FLTRT for short). We exemplify the OFSyPN model thought a case study.


2021 ◽  
Author(s):  
Adwait Verulkar ◽  
Corina Sandu ◽  
Daniel Dopico ◽  
Adrian Sandu

Abstract Sensitivity analysis is one of the most prominent gradient based optimization techniques for mechanical systems. Model sensitivities are the derivatives of the generalized coordinates defining the motion of the system in time with respect to the system design parameters. These sensitivities can be calculated using finite differences, but the accuracy and computational inefficiency of this method limits its use. Hence, the methodologies of direct and adjoint sensitivity analysis have gained prominence. Recent research has presented computationally efficient methodologies for both direct and adjoint sensitivity analysis of complex multibody dynamic systems. The contribution of this article is in the development of the mathematical framework for conducting the direct sensitivity analysis of multibody dynamic systems with joint friction using the index-1 formulation. For modeling friction in multibody systems, the Brown and McPhee friction model has been used. This model incorporates the effects of both static and dynamic friction on the model dynamics. A case study has been conducted on a spatial slider-crank mechanism to illustrate the application of this methodology to real-world systems. Using computer models, with and without joint friction, effect of friction on the dynamics and model sensitivities has been demonstrated. The sensitivities of slider velocity have been computed with respect to the design parameters of crank length, rod length, and the parameters defining the friction model. Due to the highly non-linear nature of friction, the model dynamics are more sensitive during the transition phases, where the friction coefficient changes from static to dynamic and vice versa.


2015 ◽  
Vol 7 (2) ◽  
pp. 105-134
Author(s):  
Bouneb Messaouda ◽  
Saïdouni Djamel Eddine

This paper proposes a new hierarchical design method for the specification and the verification of multi agent systems (MAS). For this purpose, the authors propose the model of Refinable Recursive Petri Nets (RRPN) under a maximality semantics. In this model, a notion of undefined transitions is considered. The underlying semantics model is the Abstract Maximality-based Labeled Transition System (AMLTS). Hence, the model supports a definition of a hierarchical design methodology. The example of goods transportation is used for illustrating the approach. For the system assessment, the properties are expressed in CTL logic and verified using the verification environment FOCOVE (Formal Concurrency Verification Environment).


Volume 3 ◽  
2004 ◽  
Author(s):  
David W. Russell

Many systems are difficult to control by conventional means because of the complexity of the very fabric of their being. Some systems perform very well under some conditions and then burst into wild, maybe even chaotic, oscillations for no apparent reason. Such systems exist in bioreactors, electro-plating and other application domains. In these cases a model may not exist that can be trusted to accurately replicate the dynamics of the real-world system. BOXES is a well known methodology that learns to perform control maneuvers for dynamic systems with only cursory a priori knowledge of the mathematics of the system model. A limiting factor in the BOXES algorithm has always been the assignment of appropriate boundaries to subdivide each state variable into regions. In addition to suggesting a method of alleviating this weakness, the paper shows that the accumulated statistical data in near neighboring states may be a powerful agent in accelerating learning, and may eventually provide a possible evolution to self-organization.


Author(s):  
Changfu Zong ◽  
Konghui Guo ◽  
Hsin Guan

In this paper, a comprehensive evaluation method for vehicle handling based on the driver’s subjective evaluation to different vehicle configurations has been studied by using development driving simulator tests. An objective evaluation index is developed which consists of several individual evaluation indices affecting vehicle handling. A series of weighting factors corresponding to individual evaluation indexes are found by using the Genetic Algorithm to reach the best agreement between the objective evaluation and the average of subjective evaluation of the drivers. Simulator test scheme has been designed and carried out with 14 vehicle configurations, and subjective evaluation has been made for easy handling of vehicle by a group of drivers. A driver/vehicle close-loop system model has been established which can predict the vehicle motion of handling and stability. Vehicle design parameters and control parameters of its control system have been optimized by using the driver/vehicle close-loop system model and objective evaluation index.


2007 ◽  
Vol 37 (1) ◽  
pp. 283-348 ◽  
Author(s):  
Carter T. Butts

A formal framework is introduced for a general class of assignment systems that can be used to characterize a range of social phenomena. An exponential family of distributions is developed for modeling such systems, allowing for the incorporation of both attributional and relational covariates. Methods are shown for simulation and inference using the location system model. Two illustrative applications (occupational stratification and residential settlement patterns) are presented, and simulation is employed to show the behavior of the location system model in each case; a third application, involving occupancy of positions within an organization, is used to demonstrate inference for the location system. By leveraging established results in the fields of social network analysis, spatial statistics, and statistical mechanics, it is argued that sociologists can model complex social systems without sacrificing inferential tractability.


Sign in / Sign up

Export Citation Format

Share Document