Machine Learning Applications in Breast Cancer Diagnosis

Author(s):  
Syed Jamal Safdar Gardezi ◽  
Mohamed Meselhy Eltoukhy ◽  
Ibrahima Faye

Breast cancer is one of the leading causes of death in women worldwide. Early detection is the key to reduce the mortality rates. Mammography screening has proven to be one of the effective tools for diagnosis of breast cancer. Computer aided diagnosis (CAD) system is a fast, reliable, and cost-effective tool in assisting the radiologists/physicians for diagnosis of breast cancer. CAD systems play an increasingly important role in the clinics by providing a second opinion. Clinical trials have shown that CAD systems have improved the accuracy of breast cancer detection. A typical CAD system involves three major steps i.e. segmentation of suspected lesions, feature extraction and classification of these regions into normal or abnormal class and further into benign or malignant stages. The diagnostics ability of any CAD system is dependent on accurate segmentation, feature extraction techniques and most importantly classification tools that have ability to discriminate the normal tissues from the abnormal tissues. In this chapter we discuss the application of machine learning algorithms e.g. ANN, binary tree, SVM, etc. together with segmentation and feature extraction techniques in a CAD system development. Various methods used in the detection and diagnosis of breast lesions in mammography are reviewed. A brief introduction of machine learning tools, used in diagnosis and their classification performance on various segmentation and feature extraction techniques is presented.

2020 ◽  
Vol 35 (33) ◽  
pp. 2043005
Author(s):  
Fernanda Psihas ◽  
Micah Groh ◽  
Christopher Tunnell ◽  
Karl Warburton

Neutrino experiments study the least understood of the Standard Model particles by observing their direct interactions with matter or searching for ultra-rare signals. The study of neutrinos typically requires overcoming large backgrounds, elusive signals, and small statistics. The introduction of state-of-the-art machine learning tools to solve analysis tasks has made major impacts to these challenges in neutrino experiments across the board. Machine learning algorithms have become an integral tool of neutrino physics, and their development is of great importance to the capabilities of next generation experiments. An understanding of the roadblocks, both human and computational, and the challenges that still exist in the application of these techniques is critical to their proper and beneficial utilization for physics applications. This review presents the current status of machine learning applications for neutrino physics in terms of the challenges and opportunities that are at the intersection between these two fields.


Healthcare ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 111 ◽  
Author(s):  
Muhammet Fatih Ak

In the developing world, cancer death is one of the major problems for humankind. Even though there are many ways to prevent it before happening, some cancer types still do not have any treatment. One of the most common cancer types is breast cancer, and early diagnosis is the most important thing in its treatment. Accurate diagnosis is one of the most important processes in breast cancer treatment. In the literature, there are many studies about predicting the type of breast tumors. In this research paper, data about breast cancer tumors from Dr. William H. Walberg of the University of Wisconsin Hospital were used for making predictions on breast tumor types. Data visualization and machine learning techniques including logistic regression, k-nearest neighbors, support vector machine, naïve Bayes, decision tree, random forest, and rotation forest were applied to this dataset. R, Minitab, and Python were chosen to be applied to these machine learning techniques and visualization. The paper aimed to make a comparative analysis using data visualization and machine learning applications for breast cancer detection and diagnosis. Diagnostic performances of applications were comparable for detecting breast cancers. Data visualization and machine learning techniques can provide significant benefits and impact cancer detection in the decision-making process. In this paper, different machine learning and data mining techniques for the detection of breast cancer were proposed. Results obtained with the logistic regression model with all features included showed the highest classification accuracy (98.1%), and the proposed approach revealed the enhancement in accuracy performances. These results indicated the potential to open new opportunities in the detection of breast cancer.


Author(s):  
Yash Nadkarni ◽  
Siddhesh Deo ◽  
Aditya Patwardhan ◽  
Amey Ponkshe

The traditional way to calculate fuel economy is done by using odometer reading and fuel consumed by car to travel that particular distance. This is a very narrow approach as fuel economy is affected by a variety of factors in the real world. Features such as throttle response, engine temperature, coolant temperature, gross weight of vehicle, etc. have a huge influence on the fuel economy. In order to overcome this problem, we have tried to predict fuel economy based on various features extracted from telemetric data in our project. In order to achieve this, we have implemented various feature selection and feature extraction techniques by further analyzing them with the purpose of calculating the effectiveness of those features to achieve high performance of machine learning algorithms that ultimately improves the predictive accuracy of the classifier. This provides us with the information regarding the amount of influence a particular feature has on the overall fuel economy of the vehicle.


Author(s):  
Vaira Suganthi Gnanasekaran ◽  
Sutha Joypaul ◽  
Parvathy Meenakshi Sundaram

Breast cancer is leading cancer among women for the past 60 years. There are no effective mechanisms for completely preventing breast cancer. Rather it can be detected at its earlier stages so that unnecessary biopsy can be reduced. Although there are several imaging modalities available for capturing the abnormalities in breasts, mammography is the most commonly used technique, because of its low cost. Computer-Aided Detection (CAD) system plays a key role in analyzing the mammogram images to diagnose the abnormalities. CAD assists the radiologists for diagnosis. This paper intends to provide an outline of the state-of-the-art machine learning algorithms used in the detection of breast cancer developed in recent years. We begin the review with a concise introduction about the fundamental concepts related to mammograms and CAD systems. We then focus on the techniques used in the diagnosis of breast cancer with mammograms.


Author(s):  
Luana Conte ◽  
Benedetta Tafuri ◽  
Maurizio Portaluri ◽  
Alessandro Galiano ◽  
Eleonora Maggiulli ◽  
...  

Breast cancer is the leading cause of cancer deaths worldwide in women. This aggressive tumour can be categorized into two main groups: in situ and infiltrative, with the latter being the most common malignant lesions. The current use of Magnetic Resonance Imaging (MRI) was shown to provide highest sensitivity in the detection and discrimination between benign vs. malignant lesions, when interpreted by expert radiologists. In this article, we present the prototype of a Computer-Aided Detection/Diagnosis (CAD) system that could provide valuable assistance to the radiologist for the discrimination between in situ and infiltrating tumours. The system consists of two main processing levels: 1) Localization of possibly tumoral regions of interest (ROIs) through an iterative procedure based on intensity values (ROI Hunter) followed by a deep-feature extraction and classification method for false-positive rejection; 2) Characterization of the selected ROIs and discrimination between in situ and invasive tumour, consisting of Radiomics feature extraction and classification through a machine-learning algorithm. The CAD system was developed and evaluated using a DCE-MRI image database, containing at least one confirmed mass per image, as diagnosed by an expert radiologist. When evaluating the accuracy of the ROI Hunter procedure with respect to the radiologist-drawn boundaries, sensitivity to mass detection was found to be 75%. The AUC of the ROC curve for discrimination between in situ and infiltrative tumors was 0.70.


2020 ◽  
Vol 10 (17) ◽  
pp. 6109
Author(s):  
Luana Conte ◽  
Benedetta Tafuri ◽  
Maurizio Portaluri ◽  
Alessandro Galiano ◽  
Eleonora Maggiulli ◽  
...  

Breast cancer is the leading cause of cancer deaths worldwide in women. This aggressive tumor can be categorized into two main groups—in situ and infiltrative, with the latter being the most common malignant lesions. The current use of magnetic resonance imaging (MRI) was shown to provide the highest sensitivity in the detection and discrimination between benign vs. malignant lesions, when interpreted by expert radiologists. In this article, we present the prototype of a computer-aided detection/diagnosis (CAD) system that could provide valuable assistance to radiologists for discrimination between in situ and infiltrating tumors. The system consists of two main processing levels—(1) localization of possibly tumoral regions of interest (ROIs) through an iterative procedure based on intensity values (ROI Hunter), followed by a deep-feature extraction and classification method for false-positive rejection; and (2) characterization of the selected ROIs and discrimination between in situ and invasive tumor, consisting of Radiomics feature extraction and classification through a machine-learning algorithm. The CAD system was developed and evaluated using a DCE–MRI image database, containing at least one confirmed mass per image, as diagnosed by an expert radiologist. When evaluating the accuracy of the ROI Hunter procedure with respect to the radiologist-drawn boundaries, sensitivity to mass detection was found to be 75%. The AUC of the ROC curve for discrimination between in situ and infiltrative tumors was 0.70.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1274
Author(s):  
Daniel Bonet-Solà ◽  
Rosa Ma Alsina-Pagès

Acoustic event detection and analysis has been widely developed in the last few years for its valuable application in monitoring elderly or dependant people, for surveillance issues, for multimedia retrieval, or even for biodiversity metrics in natural environments. For this purpose, sound source identification is a key issue to give a smart technological answer to all the aforementioned applications. Diverse types of sounds and variate environments, together with a number of challenges in terms of application, widen the choice of artificial intelligence algorithm proposal. This paper presents a comparative study on combining several feature extraction algorithms (Mel Frequency Cepstrum Coefficients (MFCC), Gammatone Cepstrum Coefficients (GTCC), and Narrow Band (NB)) with a group of machine learning algorithms (k-Nearest Neighbor (kNN), Neural Networks (NN), and Gaussian Mixture Model (GMM)), tested over five different acoustic environments. This work has the goal of detailing a best practice method and evaluate the reliability of this general-purpose algorithm for all the classes. Preliminary results show that most of the combinations of feature extraction and machine learning present acceptable results in most of the described corpora. Nevertheless, there is a combination that outperforms the others: the use of GTCC together with kNN, and its results are further analyzed for all the corpora.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhikuan Zhao ◽  
Jack K. Fitzsimons ◽  
Patrick Rebentrost ◽  
Vedran Dunjko ◽  
Joseph F. Fitzsimons

AbstractMachine learning has recently emerged as a fruitful area for finding potential quantum computational advantage. Many of the quantum-enhanced machine learning algorithms critically hinge upon the ability to efficiently produce states proportional to high-dimensional data points stored in a quantum accessible memory. Even given query access to exponentially many entries stored in a database, the construction of which is considered a one-off overhead, it has been argued that the cost of preparing such amplitude-encoded states may offset any exponential quantum advantage. Here we prove using smoothed analysis that if the data analysis algorithm is robust against small entry-wise input perturbation, state preparation can always be achieved with constant queries. This criterion is typically satisfied in realistic machine learning applications, where input data is subjective to moderate noise. Our results are equally applicable to the recent seminal progress in quantum-inspired algorithms, where specially constructed databases suffice for polylogarithmic classical algorithm in low-rank cases. The consequence of our finding is that for the purpose of practical machine learning, polylogarithmic processing time is possible under a general and flexible input model with quantum algorithms or quantum-inspired classical algorithms in the low-rank cases.


Sign in / Sign up

Export Citation Format

Share Document