Risk Inherent in Matching Unreliability With Uncertainty

Author(s):  
Roy L. Nersesian ◽  
Joe McManus

Solar and wind are unreliable sources of energy. Several years ago, there was an eclipse over Europe during calm weather reducing renewable (wind and solar) power to nil – without 100% backup, the lights would have gone out. Electricity demand is uncertain, but its uncertainty can be bracketed within known parameters based on an analysis of past demand. Meeting uncertain demand with reliable supply (fossil fuel, nuclear, hydro except in dry seasons) is the normal course of business for an operating utility. Matching up unreliable supply with uncertain demand is a newly emerging trend with the advent of renewables. At first, when solar and wind made minute contributions to satisfying electricity demand, the challenge was manageable. The challenge is becoming more prominent with the growth in the contribution of solar and wind to electricity supply. This chapter describes the risk of matching unreliability with uncertainty via a simulation of a utility with a notable commitment to renewables. Upon measuring risk, means to mitigate that risk will be covered.

Author(s):  
Muhardika Muhardika ◽  
Syafii Syafii

<p>Solar power plants using environmentally friendly technology in the process of harvesting energy from the sun can be a solution to the future electricity crisis so that it has been the most widely developed and reliable alternative. However, the conversion of solar energy depends on the availability and conditions of sunlight. In sunny conditions, the PV system can serve large loads while charging the battery to the maximum. While in cloudy weather conditions or at night, the PV system serves the load and without charge of the battery. The battery will discharge the stored energy until it runs out, and the supply to the load will be cut off before the desired time. Therefore, research on the PV system loading management system is needed to increase the amount of electricity from solar energy and maintain the continuity of electricity supply to the load. The load power management strategy follows the conditions of sunny, cloudy, rainy, or night time by considering the remaining capacity of the battery that can be used. Load installations are designed to consist of low, medium, and high load installations. Simulation results show that the use of PV loading management strategies can increase the operating time of the PV system. When the remaining less than 10% battery capacity and PLN supply is available, the supply will be switched to PLN. The remaining 10% of PV battery capacity could be used to maintain electricity supply to a low load if the PLN supply interrupted. Thus, the use of a loading management strategy will increase the electricity supply from renewable energy and improve the sustainability of electricity supply.</p>


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5336
Author(s):  
Javier Bueno ◽  
Desiderio Romero-Jordán ◽  
Pablo del Río

Electricity provides a crucial service in our daily lives. However, in electricity systems mostly based on conventional, fossil-fuel fired technologies, an increase in electricity demand also leads to higher greenhouse gas emissions and, in countries without fossil-fuel resources, also increases their dependence on foreign energy sources. In more decarbonised electricity systems, with a high penetration of variable renewable energy sources, strong increases in electricity demand lead to higher system costs, given the need for back-up. Therefore, identifying the drivers of electricity demand is an academically-relevant, but also a policy-relevant exercise, since specific policy measures can be linked to those drivers. The aim of this paper is to assess the drivers of electricity demand in Spain in the period immediately after the economic crisis (2013–2017), with the help of a unique database of Spanish households and econometric modeling. Our results show that electricity demand in this period has mostly been driven by price changes. Demand has been highly price-elastic, with price elasticities being much higher (in absolute values) than in previous studies and periods. It is also negatively driven by the features of the household and its breadwinners (whether they are single-parent households or its members are foreign residents) and positively driven by income, the hours of sun and temperature changes, although the influence of these variables is much lower. In contrast, other variables do not seem to have an influence on demand, including the age of the breadwinners and their working situation (whether they are unemployed or not). These results suggest that price-based instruments, i.e., measures with an impact on electricity prices, would be the most effective to curb electricity demand.


2016 ◽  
Author(s):  
Carlos Tommasi ◽  
Roberto Zennaro ◽  
Marco Ferrari ◽  
Lino Carnelli ◽  
Tamara Passera ◽  
...  

2015 ◽  
Vol 105 (1) ◽  
pp. 35-66 ◽  
Author(s):  
Shaun McRae

Electricity and water are often subsidized in developing countries to increase their affordability for low-income households. Ideally, such subsidies would create sufficient demand in poor neighborhoods to encourage private investment in their infrastructure. Instead, many regions receiving large subsidies have precarious distribution networks supplying users who never pay. Using a structural model of household electricity demand in Colombia, I predict the change in consumption and profits from upgrading low-quality electricity connections. I show that the existing subsidies, which provide greater transfers to areas with unreliable supply, deter investment to modernize infrastructure. Finally, I analyze alternative programs with stronger investment incentives. (JEL H23, H54, L94, L98, O12, O13)


1986 ◽  
Vol 5 (1) ◽  
pp. 9-17
Author(s):  
J. W. L. De Villiers

ESCOM, at present providing for some 95% of the electricity demand, has grown from a relatively small undertaking with a total installed capacity of less than 30 MW(e) in 1922 and a capital expenditure of R15 million during the period 1923 -1930, to a gigantic undertaking with a fixed-asset value of nearly R16 billion in 1984, a staff complement of more than 60 000 and an income of over R3 billion p.a. With an estimated capital-expansion programme of between 4 and 5 billion rand p.a., ESCOM is the largest single borrower on the local capital market and it exercises a strong influence on the economy.


2015 ◽  
Vol 257 (1-2) ◽  
pp. 537-557 ◽  
Author(s):  
Hong Fu ◽  
Yongkai Ma ◽  
Debing Ni ◽  
Xiaoqiang Cai

2021 ◽  
Vol 73 (08) ◽  
pp. 8-8
Author(s):  
Pam Boschee

Forecasts for oil demand are looking up, according to OPEC and the International Energy Agency as of mid-July. Will the optimistic views prove to be on target? We have learned how the market can shift or wildly careen, both historically and in the very recent past. Looking at the forecasts, which reflect a consensus of sorts, is encouraging for producers. OPEC’s monthly report of 15 July projected global oil demand to reach nearly 100 million B/D next year, a level similar to pre-pandemic in 2019. The 2021 oil demand growth remains unchanged at 5.95 million B/D, or approximately 6.6%. Led by demand growth in the US, China, and India, a 3.4% increase is expected in 2022 to 99.86 million B/D and would average more than 100 million B/D in the second half of the year. “Solid expectations exist for global economic growth in 2022,” OPEC said. “These include improved containment of COVID-19, particularly in emerging and developing countries, which are forecast to spur oil demand to reach pre-pandemic levels in 2022.” If the actual recovery tracks with these predictions, OPEC can dial back further its record-level supply cuts made in 2020. The IEA points to the growth expected in global electricity demand as spurring fossil-fuel demand, including oil, coal, and natural gas. After falling by around 1% in 2020, electricity demand growth may approach 5% in 2021 and 4% in 2022. The Asia Pacific region will account for the majority of the increases. China, the world’s largest consumer of electricity, leads the tally, accounting for more than 50% of the 2022 growth. India, the third largest, will account for 9% of the global electricity growth. Renewables are expected to be able to serve around half of the projected growth in global demand in 2021 and 2022. IEA wrote, “Renewable electricity generation continues to grow strongly—but cannot keep up with increasing demand. After expanding by 7% in 2020, electricity generation from renewables is forecast to increase by 8% in 2021 and by more than 6% in 2022.” Fossil fuel-based electricity is set to cover 45% of additional demand in 2021 and 40% in 2022. After declining by 4.6% in 2020, coal-fired electricity generation will increase by nearly 5% in 2021, exceeding pre-pandemic levels. In 2022, it will grow another 3% and could reach an all-time high. Natural gas-generated electricity lags coal because it is less commonly used in the Asia Pacific and competes with renewables in the US and Europe. It is expected to increase globally by 1% in 2021 and by nearly 2% in 2022 after declining by 2% in 2020. The US Energy Information Administration published a global financial review last month of 91 oil and gas companies, most headquartered in the US, in the first quarter 2021. It indicated that companies are implementing their plans announced over the past year to reduce capital expenditures to pay down debt. Capital expenditure in 1Q2021 was reported as $48 billion, 28% lower than in 1Q2020 and the second- lowest amount for any quarter since 2016. Cash from operations in Q1 this year totaled $79 billion, 19% higher than in 1Q2020; about 76% of companies had positive free cash flow. Overall, the companies decreased debt by $16 billion in 1Q2021, and the long-term debt-to-equity ratio decreased to 54%.


Sign in / Sign up

Export Citation Format

Share Document