3D Reconstruction Algorithms Survey

Author(s):  
Mohamed Karam Gabr ◽  
Rimon Elias

Over the past years, 3D reconstruction has proved to be a challenge. With augmented reality and robotics attracting more attention, the demand for efficient 3D reconstruction algorithms has increased. 3D reconstruction presents a problem in computer vision and as a result, much work has been dedicated to solving it. Different design choices were made to consider different components of the process. Examples of these differences are how the scanning process is tackled, how the 3D reconstructed world is represented, among other aspects. Therefore, an evaluation of these algorithms is necessary. This chapter focuses on the properties that facilitate the evaluation of 3D reconstruction algorithms and provides an evaluation of the various algorithms.

Author(s):  
Gilles Simon

It is generally accepted that Jan van Eyck was unaware of perspective. However, an a-contrario analysis of the vanishing points in five of his paintings, realized between 1432 and 1439, unveils a recurring fishbone-like pattern that could only emerge from the use of a polyscopic perspective machine with two degrees of freedom. A 3D reconstruction of Arnolfini Portrait compliant with this pattern suggests that van Eyck's device answered a both aesthetic and scientific questioning on how to represent space as closely as possible to human vision. This discovery makes van Eyck the father of today's immersive and nomadic creative media such as augmented reality and synthetic holography.


Author(s):  
Mubariz Zaffar ◽  
Sourav Garg ◽  
Michael Milford ◽  
Julian Kooij ◽  
David Flynn ◽  
...  

AbstractVisual place recognition (VPR) is the process of recognising a previously visited place using visual information, often under varying appearance conditions and viewpoint changes and with computational constraints. VPR is related to the concepts of localisation, loop closure, image retrieval and is a critical component of many autonomous navigation systems ranging from autonomous vehicles to drones and computer vision systems. While the concept of place recognition has been around for many years, VPR research has grown rapidly as a field over the past decade due to improving camera hardware and its potential for deep learning-based techniques, and has become a widely studied topic in both the computer vision and robotics communities. This growth however has led to fragmentation and a lack of standardisation in the field, especially concerning performance evaluation. Moreover, the notion of viewpoint and illumination invariance of VPR techniques has largely been assessed qualitatively and hence ambiguously in the past. In this paper, we address these gaps through a new comprehensive open-source framework for assessing the performance of VPR techniques, dubbed “VPR-Bench”. VPR-Bench (Open-sourced at: https://github.com/MubarizZaffar/VPR-Bench) introduces two much-needed capabilities for VPR researchers: firstly, it contains a benchmark of 12 fully-integrated datasets and 10 VPR techniques, and secondly, it integrates a comprehensive variation-quantified dataset for quantifying viewpoint and illumination invariance. We apply and analyse popular evaluation metrics for VPR from both the computer vision and robotics communities, and discuss how these different metrics complement and/or replace each other, depending upon the underlying applications and system requirements. Our analysis reveals that no universal SOTA VPR technique exists, since: (a) state-of-the-art (SOTA) performance is achieved by 8 out of the 10 techniques on at least one dataset, (b) SOTA technique in one community does not necessarily yield SOTA performance in the other given the differences in datasets and metrics. Furthermore, we identify key open challenges since: (c) all 10 techniques suffer greatly in perceptually-aliased and less-structured environments, (d) all techniques suffer from viewpoint variance where lateral change has less effect than 3D change, and (e) directional illumination change has more adverse effects on matching confidence than uniform illumination change. We also present detailed meta-analyses regarding the roles of varying ground-truths, platforms, application requirements and technique parameters. Finally, VPR-Bench provides a unified implementation to deploy these VPR techniques, metrics and datasets, and is extensible through templates.


2018 ◽  
Vol 1 (2) ◽  
pp. 17-23
Author(s):  
Takialddin Al Smadi

This survey outlines the use of computer vision in Image and video processing in multidisciplinary applications; either in academia or industry, which are active in this field.The scope of this paper covers the theoretical and practical aspects in image and video processing in addition of computer vision, from essential research to evolution of application.In this paper a various subjects of image processing and computer vision will be demonstrated ,these subjects are spanned from the evolution of mobile augmented reality (MAR) applications, to augmented reality under 3D modeling and real time depth imaging, video processing algorithms will be discussed to get higher depth video compression, beside that in the field of mobile platform an automatic computer vision system for citrus fruit has been implemented ,where the Bayesian classification with Boundary Growing to detect the text in the video scene. Also the paper illustrates the usability of the handed interactive method to the portable projector based on augmented reality.   © 2018 JASET, International Scholars and Researchers Association


1999 ◽  
Vol 18 (3-4) ◽  
pp. 265-273
Author(s):  
Giovanni B. Garibotto

The paper is intended to provide an overview of advanced robotic technologies within the context of Postal Automation services. The main functional requirements of the application are briefly referred, as well as the state of the art and new emerging solutions. Image Processing and Pattern Recognition have always played a fundamental role in Address Interpretation and Mail sorting and the new challenging objective is now off-line handwritten cursive recognition, in order to be able to handle all kind of addresses in a uniform way. On the other hand, advanced electromechanical and robotic solutions are extremely important to solve the problems of mail storage, transportation and distribution, as well as for material handling and logistics. Finally a short description of new services of Postal Automation is referred, by considering new emerging services of hybrid mail and paper to electronic conversion.


2021 ◽  
Vol 11 (8) ◽  
pp. 3711
Author(s):  
Selma Rizvić ◽  
Dušanka Bošković ◽  
Vensada Okanović ◽  
Ivona Ivković Kihić ◽  
Irfan Prazina ◽  
...  

Bosnia and Herzegovina (BH) has a very picturesque past. Founded in 11th century, it has always been a crossroads of faiths and civilizations. Extended Reality (XR) technologies can finally take us to time travel into this history, enable us to experience past events and meet historical characters. In this paper, we overview the latest applications we developed that use Virtual Reality (VR) video, Virtual and Augmented Reality (AR) for interactive digital storytelling about BH history. “Nine dissidents” is the first BH VR documentary, tackling a still tricky subject of dissidents in the Socialist Yugoslavia, artists and writers falsely accused, persecuted and still forbidden. “Virtual Museum of Old Crafts” aims to present and preserve crafts intangible heritage through Virtual Reality. “Battle on Neretva VR” is recreating a famous WWII battle offering the users to experience it and meet comrade Tito, the commander of the Yugoslav Liberation Army. “Sarajevo 5D” shows the cultural monuments from Sarajevo that do not exist anymore in physical form using Augmented Reality. Through user experience studies, we measure the user immersion and edutainment of these applications and show the potential of XR for the presentation and preservation of cultural heritage.


Author(s):  
Bappaditya Debnath ◽  
Mary O’Brien ◽  
Motonori Yamaguchi ◽  
Ardhendu Behera

AbstractThe computer vision community has extensively researched the area of human motion analysis, which primarily focuses on pose estimation, activity recognition, pose or gesture recognition and so on. However for many applications, like monitoring of functional rehabilitation of patients with musculo skeletal or physical impairments, the requirement is to comparatively evaluate human motion. In this survey, we capture important literature on vision-based monitoring and physical rehabilitation that focuses on comparative evaluation of human motion during the past two decades and discuss the state of current research in this area. Unlike other reviews in this area, which are written from a clinical objective, this article presents research in this area from a computer vision application perspective. We propose our own taxonomy of computer vision-based rehabilitation and assessment research which are further divided into sub-categories to capture novelties of each research. The review discusses the challenges of this domain due to the wide ranging human motion abnormalities and difficulty in automatically assessing those abnormalities. Finally, suggestions on the future direction of research are offered.


2015 ◽  
Vol 75 (2) ◽  
Author(s):  
Ho Wei Yong ◽  
Abdullah Bade ◽  
Rajesh Kumar Muniandy

Over the past thirty years, a number of researchers have investigated on 3D organ reconstruction from medical images and there are a few 3D reconstruction software available on the market. However, not many researcheshave focused on3D reconstruction of breast cancer’s tumours. Due to the method complexity, most 3D breast cancer’s tumours reconstruction were done based on MRI slices dataeven though mammogram is the current clinical practice for breast cancer screening. Therefore, this research will investigate the process of creating a method that will be able to reconstruct 3D breast cancer’s tumours from mammograms effectively.  Several steps were proposed for this research which includes data acquisition, volume reconstruction, andvolume rendering. The expected output from this research is the 3D breast cancer’s tumours model that is generated from correctly registered mammograms. The main purpose of this research is to come up with a 3D reconstruction method that can produce good breast cancer model from mammograms while using minimal computational cost.


CATENA ◽  
2008 ◽  
Vol 75 (2) ◽  
pp. 200-215 ◽  
Author(s):  
Severin Hohensinner ◽  
Mathew Herrnegger ◽  
Alfred P. Blaschke ◽  
Christine Habereder ◽  
Gertrud Haidvogl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document