Impact of Climate Change on the Retreat of Himalayan Glaciers and Its Impact on Major River Hydrology

Author(s):  
Ram Karan Singh

Himalayan Glaciers are the largest freshwater resource on earth and the rivers originating from them are an important source of water. They significantly modify stream flow both in quantity and timing as annual basin run-off is enhanced or decreased in years of negative or positive glacier mass balance respectively. Although glacial advances and retreats are a part of its natural cyclic phenomenon, the rate of de-glaciations has accelerated in recent times due to climatic changes and global warming caused by anthropogenic activities. Some of the important glaciers of Himalayas are receding at an alarming rate, which could have dire consequences on river hydrology of the main rivers of this region namely, Indus, Ganga and Brahmaputra, initially causing floods and the paradoxically, scarcity of water later. This chapter is an attempt to summarize some of the studies on Himalayan glacier retreats and also to assess its impact on the availability of freshwater in the sub-continent.

Author(s):  
Ram Karan Singh

Himalayan Glaciers are the largest freshwater resource on earth and the rivers originating from them are an important source of water. They significantly modify stream flow both in quantity and timing as annual basin run-off is enhanced or decreased in years of negative or positive glacier mass balance respectively. Although glacial advances and retreats are a part of its natural cyclic phenomenon, the rate of de-glaciations has accelerated in recent times due to climatic changes and global warming caused by anthropogenic activities. Some of the important glaciers of Himalayas are receding at an alarming rate, which could have dire consequences on river hydrology of the main rivers of this region namely, Indus, Ganga and Brahmaputra, initially causing floods and the paradoxically, scarcity of water later. This chapter is an attempt to summarize some of the studies on Himalayan glacier retreats and also to assess its impact on the availability of freshwater in the sub-continent.


2021 ◽  
Vol 4 (3) ◽  
Author(s):  
Sheikh Nawaz Ali ◽  
Anil D. Shukla

Himalayan glaciers‒ the store house of fresh water outside the polar region contributes ~45% of the total river flow by glacial melt in the Indus, Ganga and Brahmaputra watersheds which supports the livelihood of ~500 million people . The sustainability of these rivers is being questioned because of the growing evidences of accelerated glacier retreat in the recent decades, which is expected to have cascading effects on the mountainous areas and their surrounding lowlands. The rapid melting of Himalayan glaciers reveals their sensitivity to ongoing changes in climate dynamics, and if the current trend continues, rivers that rely heavily on snow/ice melt are expected to suffer hydrological disruptions to the point where some of the most populous areas may ‘run out of water’ during the dry season. Therefore, efforts are being made to study the glacier mass balance trends in order to understand the patterns and causes of recent recessional trend. Despite their importance, the absence of long-term mass-balance and remote sensing data restricts our knowledge of the Himalayan glaciers’ sensitivity/ response to climate change. Furthermore, such studies may be insufficient unless are compared to long-term glacier fluctuations (millennial and multi-millennial time scales), which aid in better understanding the natural trends of and human impacts on climate change, as well as assessing the causes and possible future of contemporary shrinking glaciers. This will also improve our understanding of past glacier behaviour in the context of primary causes of glacier change, which is critical for water resource management and understanding climate variability in high alpine areas where alternative proxy climate archives are typically scarce. Therefore, it is pertinent to pool our scientific resources and energy (i) towards understanding the Himalayan glaciers’ feeders (precipitation sources) and how they changed over time (geological and historical), as well as the causes of glaciers recession, one of which has been identified as (ii) black soot (carbon) in aerosol pollution.


2010 ◽  
Vol 49 (4II) ◽  
pp. 771-798 ◽  
Author(s):  
Uzma Hanif ◽  
Shabib Haider Syed ◽  
Rafique Ahmad ◽  
Kauser Abdullah Malik

As back as the Industrial Revolution, anthropogenic activities namely, power generation from fossil fuels and deforestation activities have been continuously increasing the atmospheric concentration of GHGs beyond their natural limits resulting in an enhanced greenhouse effect, vis-à-vis, an increase in global temperature. The rise in temperature could be coupled with changes in rainfall pattern, rise in sea level, and frequency and severity of extreme events namely, cyclones and droughts etc. The sum of all these changes is referred to as climate change. Climate change affects economic development in many ways, especially the agrarian economies have always depended on vagaries of nature and climate. Change in temperature, precipitation averages and extreme climate events can alter yield, income, health, sociology and physical safety. Climate change is a global phenomenon and no country is immune to it. The disappearing of the Himalayan glaciers at a fast pace would increase the probability of extreme water flows, rendering it uncontrolled will bring heavy floods, loss of life, livestock, crops and infrastructural facilities in Pakistan, India, Nepal and Bangladesh. Climate change will affect all sectors of the economy not alone agricultural sector the most as well as health, forests, energy, coastal area, biodiversity and ecology all over the globe. In this connection, it will be pertinent to give the most recent events which have taken place across Asia.


2019 ◽  
Vol 30 (6) ◽  
pp. 242-245
Author(s):  
Hamadttu A. F. El-Shafie

Four insect species were reported as new potential pests of date palm in recent years. They are sorghum chafer (Pachnoda interrupta), the rose chafer (Potosia opaca), the sericine chafer beetle (Maladera insanablis), and the South American palm borer (Pysandisia archon). The first three species belong to the order Coleoptera and the family Scarabaeidae, while the fourth species is a lepidopteran of the family Castniidae. The injury as well as the economic damage caused by the four species on date palm need to be quantified. Due to climate change and anthropogenic activities, the date palm pest complex is expected to change in the future. To the author's knowledge, this article provides the first report of sorghum chafer as a pest damaging date palm fruit.


Author(s):  
Xian Zhu ◽  
Zhenming Ji ◽  
Xiaohang Wen ◽  
Shao‐Yi Lee ◽  
Zhigang Wei ◽  
...  

2021 ◽  
Author(s):  
Lenka Mbadugha ◽  
Duncan Cowper ◽  
Sapar Dossanov ◽  
Graeme Paton

<p>Mining activities are acknowledged to introduce contaminants into localised environments and cause wider spread diffuse pollution. The concentration, distribution and fate of arsenic (As) and antimony (Sb) were studied at the former metalliferous Louisa Mine at Glendinning, Scotland. The associated deposit is one of very few able to produce Sb in the UK and was mined for three brief periods between 1793 and 1922.  </p><p>The remnants of the mine consist of the ore processing area and two spoils. Soils withing these zones as well as around the mine were sampled and complemented by water samples from the adjacent stream, the Glennshanna Burn. All samples were subsequently analysed to map the distribution of contamination and identify pollution sources. The maximum concentrations of As and Sb, 15490 and 1504.2 mg kg<sup>−1</sup> respectively, were determined in soils associated with the ore processing area and spoil heaps. Anthropogenic activities also redistributed As and Sb within these mine zones and altered their relative ratios. The fractions of dissolved As and Sb in soils were < 1 and < 5% of total soil content, respectively, confirming findings of previous studies that As and Sb are relatively immobile. Yet, the concentrations of As and Sb released by soils exceeded regulatory limits.</p><p>Concentrations of As and Sb in surface water in the immediate vicinity of the mine were impacted by a gully discharge, but rapidly diluted. While the concentrations affected by the run-off waters did not exceed EU environmental standards for freshwater, the concentrations of As and Sb sharply increased to 11.43 ± 3.43 and 9.28 ± 0.59 μg l<sup>−1</sup>, respectively, approximately 100 m downstream of the mine site. The unaltered As to Sb ratios in water samples suggested a geogenic source of contamination.</p><p>While there is a justifiable concern about the soil pollution caused by the historic mining in the studied area, the Glenshanna Burn is affected more by indigenous geochemical processes than the derelict mine.</p>


2014 ◽  
Vol 3 (1) ◽  
pp. 95 ◽  
Author(s):  
Ndubuaku U. M. ◽  
Ndubuaku T. C. N. ◽  
Ndubuaku N. E.

<p>The pod and yield characteristics of <em>Moringa oleifera </em>plants grown in Ibadan (Rainforest vegetation), Nsukka (Forest-derived savannah vegetation) and Jos (arid derived savannah vegetation) were evaluated from 2007- 2009 to assess adaptability of the plant to climate change threats. The rainfall and temperature distribution in the three locations varied over the years. The <em>Moringa oleifera</em> plants grown at Ibadan had the greatest pod and seed yield followed by those at Nsukka and Jos in that order. The annual pod and seed production capacities of the plants differed significantly (p &lt; 0.05) in the different locations. The overall annual pod and seed production per location, including yield characteristics, did not differ significantly throughout the years of study. <em>Moringa oleifera</em> was therefore found to be a suitable crop adaptable to various environmental and climatic changes in Nigeria.</p>


2018 ◽  
Vol 374 (1764) ◽  
pp. 20180004 ◽  
Author(s):  
Trong Dieu Hien Le ◽  
Mira Kattwinkel ◽  
Klaus Schützenmeister ◽  
John R. Olson ◽  
Charles P. Hawkins ◽  
...  

Salinization of surface waters is a global environmental issue that can pose a regional risk to freshwater organisms, potentially leading to high environmental and economic costs. Global environmental change including climate and land use change can increase the transport of ions into surface waters. We fit both multiple linear regression (LR) and random forest (RF) models on a large spatial dataset to predict Ca 2+ (266 sites), Mg 2+ (266 sites), and (357 sites) ion concentrations as well as electrical conductivity (EC—a proxy for total dissolved solids with 410 sites) in German running water bodies. Predictions in both types of models were driven by the major factors controlling salinity including geologic and soil properties, climate, vegetation and topography. The predictive power of the two types of models was very similar, with RF explaining 71–76% of the spatial variation in ion concentrations and LR explaining 70–75% of the variance. Mean squared errors for predictions were all smaller than 0.06. The factors most strongly associated with stream ion concentrations varied among models but rock chemistry and climate were the most dominant. The RF model was subsequently used to forecast the changes in EC that were likely to occur for the period of 2070 to 2100 in response to just climate change—i.e. no additional effects of other anthropogenic activities. The future forecasting shows approximately 10% and 15% increases in mean EC for representative concentration pathways 2.6 and 8.5 (RCP2.6 and RCP8.5) scenarios, respectively. This article is part of the theme issue ‘Salt in freshwaters: causes, ecological consequences and future prospects’.


2016 ◽  
Vol 64 (spe2) ◽  
pp. 117-136 ◽  
Author(s):  
Paulo Antunes Horta ◽  
Pablo Riul ◽  
Gilberto M. Amado Filho ◽  
Carlos Frederico D. Gurgel ◽  
Flávio Berchez ◽  
...  

Abstract Rhodolith beds are important marine benthic ecosystems, representing oases of high biodiversity among sedimentary seabed environments. They are found frequently and abundantly, acting as major carbonate 'factories' and playing a key role in the biogeochemical cycling of carbonates in the South Atlantic. Rhodoliths are under threat due to global change (mainly related to ocean acidification and global warming) and local stressors, such as fishing and coastal run-off. Here, we review different aspects of the biology of these organisms, highlighting the predicted effects of global change, considering the additional impact of local stressors. Ocean acidification (OA) represents a particular threat that can reduce calcification or even promote the decalcification of these bioengineers, thus increasing the eco-physiological imbalance between calcareous and fleshy algae. OA should be considered, but this together with extreme events such as heat waves and storms, as main stressors of these ecosystems at the present time, will worsen in the future, especially if possible interactions with local stressors like coastal pollution are taken into consideration. Thus, in Brazil there is a serious need for starting monitoring programs and promote innovative experimental infrastructure in order to improve our knowledge of these rich environments, optimize management efforts and enhance the needed conservation initiatives.


Sign in / Sign up

Export Citation Format

Share Document